

# Utuhina - Phases 2 and 3

# Numerical Modelling



Bay of Plenty Regional Council Report August 2021







# Utuhina - Phases 2 and 3

Numerical Modelling – Title 2

Prepared forBay of Plenty Regional CouncilRepresented byKathy Thiel-Lardon, Senior Environmental Engineer



Utuhina Stream, downstream of Malfroy Rd

| Project manager | Philip Wallace   |
|-----------------|------------------|
| Project number  | 44800902-01      |
| Approval date   | 9 September 2021 |
| Revision        | Final 1.1        |
| Classification  | Restricted       |





# CONTENTS

| 1               | Previous modelling1                                               |
|-----------------|-------------------------------------------------------------------|
| <b>2</b><br>2.1 | Introduction                                                      |
| 2.2             | Mangakakahi Stream                                                |
| <b>3</b><br>3.1 | MIKE FLOOD model                                                  |
| 3.2             | MIKE 11                                                           |
| 3.2.1           | Model branches                                                    |
| 3.2.2<br>3.2.3  | Cross-sections                                                    |
| 3.2.4           | Channel resistance                                                |
| 3.3             | MIKE 216                                                          |
| 3.3.1           | Model topography and bathymetry                                   |
| 3.3.2           | Floodplain roughness                                              |
| 4               | Hydrology9                                                        |
| 4.1             | Model inflows                                                     |
| 4.2             | Lake levels9                                                      |
| <i>E</i>        | Medel collibration 44                                             |
| <b>5</b><br>5.1 | Model calibration         11           23 January 2011         12 |
| 5.2             | 29 January 2011                                                   |
| 5.3             | 20 June 2014                                                      |
| 5.4             | 11-13 March 2017                                                  |
| 5.5<br>5.6      | 29 April 2018                                                     |
| 5.0             | Discussion                                                        |
| 6               | Design scenarios                                                  |
| 6.1             | Design model assumptions                                          |
| 6.1.1           | Design hydrology                                                  |
| 6.1.2           | Lake levels                                                       |
| 6.1.3           | Bridge debris blockage                                            |
| 6.2<br>6.2.1    | Results                                                           |
| 6.2.1           | Stream levels                                                     |
| 6.2.3           | Old Taupo Road overflow                                           |
| 6.2.4           | Flood maps                                                        |



| 7        | Conc | clusions and recommendations5 | 53 |
|----------|------|-------------------------------|----|
| 8        | Refe | rences5                       | 54 |
| Appendix | Α    | Project BriefA                | -1 |
| Appendix | В    | MIKE FLOOD FilesB.            | -1 |
| Appendix | С    | HydrologyC                    | -1 |
| Appendix | D    | Cross-section LocationsD.     | -1 |
| Appendix | E    | Calibration ResultsE          | -1 |
| Appendix | F    | Design Level ResultsF         | -1 |

# FIGURES

| Figure 1-1  | Utuhina catchment                                                                    | 1    |
|-------------|--------------------------------------------------------------------------------------|------|
| Figure 1-2  | Major tributaries and features of interest                                           | 2    |
| Figure 3-1  | Model layout                                                                         | 4    |
| Figure 3-2  | Additional model branches in Amohau St commercial development for design simulations |      |
|             | and later calibration events                                                         | 5    |
| Figure 3-3  | Channel resistance, Utuhina Stream                                                   | 6    |
| Figure 3-4  | Area where model updated with 2018 LiDAR for design events and relevant calibration  |      |
|             | events                                                                               |      |
| Figure 4-1  | Utuhina catchment and subcatchments used in NLR model                                | 9    |
| Figure 5-1  | Recorder sites                                                                       |      |
| Figure 5-2  | Utuhina @ Depot St recorder, 23 January 2011 event, recorded and model flows         | . 12 |
| Figure 5-3  | Utuhina @ Depot St recorder, 23 January 2011 event, recorded and model levels        | . 12 |
| Figure 5-4  | Mangakakahi @ Depot St recorder, 23 January 2011 event, recorded and model flows     | . 13 |
| Figure 5-5  | Mangakakahi @ Depot St recorder, 23 January 2011 event, recorded and model levels    | .13  |
| Figure 5-6  | Kuirau @ Tarawa Rd recorder, 23 January 2011 event, recorded and model flows         | . 13 |
| Figure 5-7  | Kuirau @ Tarawa Rd recorder, 23 January 2011 event, recorded and model levels        | . 14 |
| Figure 5-8  | Peak flood levels, Utuhina Stream, 23 January 2011 event                             | . 14 |
| Figure 5-9  | Utuhina @ Depot St recorder, 29 January 2011 event, recorded and model flows         | . 15 |
| Figure 5-10 | Utuhina @ Depot St recorder, 29 January 2011 event, recorded and model levels        | . 15 |
| Figure 5-11 | Mangakakahi @ Depot St recorder, 29 January 2011 event, recorded and model flows     | . 15 |
| Figure 5-12 | Mangakakahi @ Depot St recorder, 29 January 2011 event, recorded and model levels    | . 16 |
| Figure 5-13 | Kuirau @ Tarawa Rd recorder, 29 January 2011 event, recorded and model flows         | . 16 |
| Figure 5-14 | Kuirau @ Tarawa Rd recorder, 29 January 2011 event, recorded and model levels        | . 16 |
| Figure 5-15 | Peak flood levels, Utuhina Stream (Devon St to Lake), 29 January 2011 event          | . 17 |
| Figure 5-16 | Peak flood levels, Utuhina Stream downstream of Old Taupo Road, 29 January 2011      |      |
|             | event                                                                                |      |
| Figure 5-17 | Utuhina @ Depot St recorder, 20 August 2014 event, recorded and model flows          | . 18 |
| Figure 5-18 | Utuhina @ Depot St recorder, 20 August 2014 event, recorded and model levels         | . 19 |
|             | Mangakakahi @ Depot St recorder, 20 August 2014 event, recorded and model flows      |      |
|             | Mangakakahi @ Depot St recorder, 20 August 2014 event, recorded and model levels     |      |
| 0           | Kuirau @ Tarawa Rd recorder, 20 August 2014 event, recorded and model flows          |      |
| Figure 5-22 | Kuirau @ Tarawa Rd recorder, 20 August 2014 event, recorded and model levels         | .20  |



| Figure 5-24       Photograph of flooding at Ford Road, Otamatea Stream, August 2014.       21         Figure 5-25       Flood depths (model prediction), Sunset Road, Otamatea Stream August 2014.       21         Figure 5-26       Flood depths (model prediction), Ford Road, Otamatea Stream August 2014.       22         Figure 5-27       Utuhina @ Depot St recorder, 11-13 March 2017 event, recorded and model flows.       22         Figure 5-28       Utuhina @ Depot St recorder, 11-13 March 2017 event, recorded and model levels.       23         Figure 5-30       Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model levels.       23         Figure 5-33       Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels.       24         Figure 5-34       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model levels.       25         Figure 5-35       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model levels.       26         Figure 5-37       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels.       26         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       27         Figure 5-41       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       27         Figure 5-42       Vuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       27                                                                                                                      | Figure 5-23 | Photographs of flooding at Sunset Road, Otamatea Stream (upstream culvert), August 2014 | 21 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------|----|
| August 2014.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Figure 5-24 | Photograph of flooding at Ford Road, Otamatea Stream, August 2014                       | 21 |
| Figure 5-26         Fiod depths (model prediction), Ford Road, Otamatea Stream August 2014.         .22           Figure 5-27         Utuhina @ Depot St recorder, 11-13 March 2017 event, recorded and model flows.         .23           Figure 5-28         Utuhina (@ Depot St recorder, 11-13 March 2017 event, recorded and model flows.         .23           Figure 5-30         Mangakakahi (@ Depot St recorder, 11-13 March 2017 event, recorded and model flows.         .24           Figure 5-31         Kuirau (@ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model flows.         .24           Figure 5-33         Peak flood levels, Utuhina Stream, 11-13 March 2017 event.         .25           Figure 5-34         Peak flood levels, Otamatea Stream, 11-13 March 2017 event.         .25           Figure 5-34         Depot St recorder, 29 April 2018 event, recorded and model flows.         .26           Figure 5-35         Mangakakahi (@ Depot St recorder, 29 April 2018 event, recorded and model flows.         .27           Figure 5-34         Mangakakahi (D Depot St recorder, 29 April 2018 event, recorded and model flows.         .27           Figure 5-34         Kuirau (@ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows.         .27           Figure 5-34         Kuirau (@ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows.         .27           Figure 5-42         CH curve for Mangakakahi (D Depot St.         .30                                                                                                   | Figure 5-25 | Flood depths (model prediction), Sunset Road, Otamatea Stream (upstream culvert),       |    |
| Figure 5-27       Utuhina @ Depot St recorder, 11-13 March 2017 event, recorded and model levels       .22         Figure 5-28       Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model levels       .23         Figure 5-30       Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model levels       .23         Figure 5-31       Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels       .24         Figure 5-32       Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels       .24         Figure 5-35       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model levels       .26         Figure 5-35       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model levels       .26         Figure 5-36       Winawa Rd recorder, 29 April 2018 event, recorded and model levels       .27         Figure 5-37       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels       .27         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels       .27         Figure 5-41       Recorded food levels south of SH30A, April 2018 event, recorded and model levels       .27         Figure 5-43       CH curve for Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels       .27         Figure 5-43       CH curve for Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded                                                                                           |             | August 2014                                                                             | 21 |
| Figure 5-27       Utuhina @ Depot St recorder, 11-13 March 2017 event, recorded and model levels       .22         Figure 5-28       Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model levels       .23         Figure 5-30       Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model levels       .23         Figure 5-31       Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels       .24         Figure 5-32       Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels       .24         Figure 5-35       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model levels       .26         Figure 5-35       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model levels       .26         Figure 5-36       Winawa Rd recorder, 29 April 2018 event, recorded and model levels       .27         Figure 5-37       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels       .27         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels       .27         Figure 5-41       Recorded food levels south of SH30A, April 2018 event, recorded and model levels       .27         Figure 5-43       CH curve for Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels       .27         Figure 5-43       CH curve for Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded                                                                                           | Figure 5-26 |                                                                                         |    |
| Figure 5-28         Utuhina @ Depot St recorder, 11-13 March 2017 event, recorded and model levels.         23           Figure 5-29         Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model levels.         23           Figure 5-31         Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels.         24           Figure 5-32         Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels.         24           Figure 5-33         Peak flood levels, Utuhina Stream, 11-13 March 2017 event, recorded and model lows.         26           Figure 5-35         Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model flows.         26           Figure 5-36         Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model flows.         26           Figure 5-37         Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model flows.         26           Figure 5-38         Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows.         27           Figure 5-41         Recorded flood levels south of S130A, April 2018 event, recorded and model flows.         27           Figure 5-43         Q-H curve for Mungakakahi @ Depot St.         30           Figure 5-43         Q-H curve for Mungakakahi @ Depot St.         30           Figure 5-43         Q-H curve for Mungakakahi @ Depot St.         30           Figure                                                                                                                     | Figure 5-27 | Utuhina @ Depot St recorder, 11-13 March 2017 event, recorded and model flows           | 22 |
| Figure 5-29 Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model flows23<br>Figure 5-31 Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels23<br>Figure 5-32 Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels24<br>Figure 5-34 Peak flood levels, Uthina Stream, 11-13 March 2017 event. recorded and model levels24<br>Figure 5-35 Uthina @ Depot St recorder, 29 April 2018 event, recorded and model levels26<br>Figure 5-36 Uthina @ Depot St recorder, 29 April 2018 event, recorded and model levels26<br>Figure 5-37 Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels26<br>Figure 5-37 Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model flows27<br>Figure 5-37 Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows27<br>Figure 5-40 Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows27<br>Figure 5-43 Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows27<br>Figure 5-44 Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows28<br>Figure 5-43 Q-H curve for Utuhina @ Depot St                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                         |    |
| Figure 5-30 Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model levels23 Figure 5-31 Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                         |    |
| Figure 5-31       Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels       .24         Figure 5-33       Peak flood levels, Utuhina Stream, 11-13 March 2017 event.       .25         Figure 5-34       Peak flood levels, Utuhina Stream, 11-13 March 2017 event.       .25         Figure 5-35       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model levels.       .26         Figure 5-36       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model levels.       .26         Figure 5-37       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-37       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-43       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-43       C-H curve for Utuhina @ Depot St       .30         Figure 5-43       C-H curve for Utuhina @ Depot St       .31         Figure 5-45       Flows at Utuhina Stream downstream of recorder site.       .32         Figure 6-3       Peak flood levels (current climate design scenarios), Otamatea Stream.       .37         Figure 6-45       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream.       .38                                                                                                                                                      | Figure 5-30 | Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model levels      | 23 |
| Figure 5-32       Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                         |    |
| Figure 5-34       Peak flood levels, Otamatea Stream, 11-13 March 2017 event.       .25         Figure 5-35       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model flows.       .26         Figure 5-36       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels.       .26         Figure 5-38       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-43       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-44       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-43       C-H curve for Mangakakahi @ Depot St.       .30         Figure 5-44       Side drains entering Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       .32         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       .32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream.       .33         Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream.       .37         Figure 6-3       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream.       .38         Figure 6-4       Peak flood levels (130 climate design scenarios), Utuhina Stream.       .39         Figure 6-5 </td <td>Figure 5-32</td> <td>Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels</td> <td>24</td> | Figure 5-32 | Kuirau @ Tarawa Rd recorder, 11-13 March 2017 event, recorded and model levels          | 24 |
| Figure 5-34       Peak flood levels, Otamatea Stream, 11-13 March 2017 event.       .25         Figure 5-35       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model flows.       .26         Figure 5-36       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels.       .26         Figure 5-38       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-43       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-44       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-43       C-H curve for Mangakakahi @ Depot St.       .30         Figure 5-44       Side drains entering Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       .32         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       .32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream.       .33         Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream.       .37         Figure 6-3       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream.       .38         Figure 6-4       Peak flood levels (130 climate design scenarios), Utuhina Stream.       .39         Figure 6-5 </td <td>Figure 5-33</td> <td>Peak flood levels, Utuhina Stream, 11-13 March 2017 event</td> <td>25</td>                      | Figure 5-33 | Peak flood levels, Utuhina Stream, 11-13 March 2017 event                               | 25 |
| Figure 5-35       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model flows.       .26         Figure 5-37       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model flows.       .26         Figure 5-38       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model flows.       .27         Figure 5-38       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows.       .27         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows.       .27         Figure 5-41       Recorded flood levels south of SH30A, April 2018 event, recorded and model flows.       .27         Figure 5-42       C-H curve for Utuhina @ Depot St.       .30         Figure 5-43       Side drains entering Utuhina Stream downstream of recorder site.       .32         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       .32         Figure 6-11       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream:       .35         Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream       .37         Figure 6-3       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       .38         Figure 6-4       Peak flood levels (2130 climate design scenarios), Utuhina Stream       .39         Figure 6-5       Peak floo                                                                                                                                      |             |                                                                                         |    |
| Figure 5-36       Utuhina @ Depot St recorder, 29 April 2018 event, recorded and model levels.       .26         Figure 5-37       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-38       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       .27         Figure 5-41       Recorded flood levels south of SH30A, April 2018 event, recorded and model levels.       .27         Figure 5-42       Q-H curve for Utuhina @ Depot St.       .30         Figure 5-43       Side drains entering Utuhina Stream downstream of recorder site.       .32         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       .32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream.       .35         Figure 6-3       Peak flood levels (current climate design scenarios), Otamatea Stream.       .37         Figure 6-4       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream.       .38         Figure 6-6       Peak flood levels (1% AEP design scenarios), Iutuhina Stream.       .39         Figure 6-7       Peak flood levels (1% AEP design scenarios), Iutuhina Stream.       .40         Figure 6-11       Flow hydrographs for Utuh                                                                                                                                      |             |                                                                                         |    |
| Figure 5-37       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model flows.       26         Figure 5-38       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model flows.       27         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows.       27         Figure 5-41       Recorded flood levels south of SH30A, April 2018 event.       28         Figure 5-42       Q-H curve for Utuhina @ Depot St.       30         Figure 5-43       G-H curve for Mangakakahi @ Depot St.       31         Figure 5-44       Side drains entering Utuhina Stream downstream of recorder site       32         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       32         Figure 6-17       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream: urban and upper Utuhina storm centres.       35         Figure 6-3       Peak flood levels (current climate design scenarios), Otamatea Stream       37         Figure 6-4       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-5       Peak flood levels (2130 climate design scenarios), Idunina Stream       39         Figure 6-6       Peak flood levels (1% AEP design scenarios), Idunina Stream       39         Figure 6-11       Flow hydrographs for Utuhina Stream at Depot St recorder site (u                                                                                                                                      |             |                                                                                         |    |
| Figure 5-38       Mangakakahi @ Depot St recorder, 29 April 2018 event, recorded and model levels.       27         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       27         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels.       27         Figure 5-41       Recorded flood levels south of SH30A, April 2018 event.       28         Figure 5-43       Q-H curve for Utuhina @ Depot St.       31         Figure 5-44       Side drains entering Utuhina Stream downstream of recorder site       32         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream: urban       37         Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream       37         Figure 6-3       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-4       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-5       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-6       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urb                                                                                                                                      |             |                                                                                         |    |
| Figure 5-39       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows       27         Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels       27         Figure 5-41       Recorded flood levels south of SH30A, April 2018 event.       28         Figure 5-42       Q-H curve for Utuhina @ Depot St       30         Figure 5-43       Q-H curve for Mangakakahi @ Depot St       31         Figure 5-44       Side drains entering Utuhina Stream downstream of recorder site       32         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream:       37         Figure 6-2       Peak flood levels (2130 climate design scenarios), Otamatea Stream       37         Figure 6-3       Peak flood levels (2130 climate design scenarios), Otamagakakahi Stream       38         Figure 6-4       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-5       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-6       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41      <                                                                                                                                                             |             |                                                                                         |    |
| Figure 5-40       Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels       27         Figure 5-41       Recorded flood levels south of SH30A, April 2018 event.       28         Figure 5-42       Q-H curve for Utuhina @ Depot St.       30         Figure 5-43       Q-H curve for Mangakakahi @ Depot St.       31         Figure 5-44       Side drains entering Utuhina Stream downstream of recorder site       32         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream:       37         Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream       37         Figure 6-3       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-4       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-5       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-6       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)       42 </td <td></td> <td></td> <td></td>                                                                                                                        |             |                                                                                         |    |
| Figure 5-41       Recorded flood levels south of SH30A, April 2018 event.       28         Figure 5-42       Q-H curve for Utuhina @ Depot St.       30         Figure 5-43       Q-H curve for Mangakakali @ Depot St.       31         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event.       32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream: urban and upper Utuhina storm centres.       35         Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream       37         Figure 6-3       Peak flood levels (current climate design scenarios), Mangakakahi Stream       38         Figure 6-4       Peak flood levels (2130 climate design scenarios), Nangakakahi Stream       39         Figure 6-5       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-7       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-7       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-12       Flow hydrographs for Mangakakahi Stream at Old Taupo Rd                                                                                                                                       |             |                                                                                         |    |
| Figure 5-42       Q-H curve for Utuhina @ Depot St.       30         Figure 5-43       Q-H curve for Mangakakahi @ Depot St.       31         Figure 5-43       G-H curve for Mangakakahi @ Depot St.       32         Figure 5-44       Side drains entering Utuhina Stream downstream of recorder site       32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream: urban and upper Utuhina storm centres.       35         Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream       37         Figure 6-3       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-4       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-5       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       39         Figure 6-6       Peak flood levels (1% AEP design scenarios), Utuhina Stream       40         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Utuhina Stream at Old Taupo Rd (urban storm centre)       41         Figure 6-12       Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)       42         Figure 6-12       Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)       42                                                                                                                                                       |             |                                                                                         |    |
| Figure 5-43       Q-H curve for Mangakakahi @ Depot St.       31         Figure 5-44       Side drains entering Utuhina Stream downstream of recorder site       32         Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream: urban<br>and upper Utuhina storm centres.       35         Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream       37         Figure 6-3       Peak flood levels (current climate design scenarios), Mangakakahi Stream       38         Figure 6-4       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-5       Peak flood levels (2130 climate design scenarios), Nangakakahi Stream       38         Figure 6-6       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-7       Peak flood levels (current climate design scenarios), Utuhina Stream       40         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       42         Figure 6-12       Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)       42         Figure 6-13       Flow                                                                                                                               |             |                                                                                         |    |
| Figure 5-44       Side drains entering Utuhina Stream downstream of recorder site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                         |    |
| Figure 5-45       Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event32         Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream: urban and upper Utuhina storm centres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                                                         |    |
| Figure 6-1       Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream: urban and upper Utuhina storm centres.       35         Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream       37         Figure 6-3       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-4       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-5       Peak flood levels (2130 climate design scenarios), Nangakakahi Stream       38         Figure 6-6       Peak flood levels (2130 climate design scenarios), Iower Mangakakahi Stream       39         Figure 6-7       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-7       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-8       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-10       Plow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)       42         Figure 6-12       Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)       42         Figure 6-13       Flow hydrographs for 1% AEP storm, current climate, urban storm centre       42         Figure 6-13 </td <td></td> <td></td> <td></td>                                                                                            |             |                                                                                         |    |
| and upper Utuhina storm centres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                         |    |
| Figure 6-2       Peak flood levels (current climate design scenarios), Otamatea Stream       37         Figure 6-3       Peak flood levels (2130 climate design scenarios), Otamatea Stream       37         Figure 6-4       Peak flood levels (current climate design scenarios), Mangakakahi Stream       38         Figure 6-5       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-6       Peak flood levels (2130 climate design scenarios), Iower Mangakakahi Stream       39         Figure 6-7       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-7       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-7       Peak flood levels (current climate design scenarios), Utuhina Stream       40         Figure 6-7       Peak flood levels (1% AEP design scenarios), Utuhina Stream       40         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Utuhina Stream at Old Taupo Rd (urban storm centre)       42         Figure 6-12       Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)       42         Figure 6-15       Flow hydrographs for 1% AEP storm, current climate, urban storm centre       43         Figure 6-15       Flow overtopping Old Taupo Rd, urban storm                                                                                                                                       | 0           |                                                                                         | 35 |
| Figure 6-3       Peak flood levels (2130 climate design scenarios), Otamatea Stream       37         Figure 6-4       Peak flood levels (current climate design scenarios), Mangakakahi Stream       38         Figure 6-5       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-6       Peak flood levels (1% AEP design scenarios), lower Mangakakahi Stream       39         Figure 6-7       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-7       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-8       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-9       Peak flood levels (2130 climate design scenarios), Utuhina Stream       40         Figure 6-10       Plow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)       42         Figure 6-12       Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)       42         Figure 6-12       Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)       42         Figure 6-13       Flow hydrographs for Mangakakahi Stream, current climate, urban storm centre       43         Figure 6-16       Flow hydrographs f                                                                                                                                      | Figure 6-2  |                                                                                         |    |
| Figure 6-4       Peak flood levels (current climate design scenarios), Mangakakahi Stream       38         Figure 6-5       Peak flood levels (2130 climate design scenarios), Mangakakahi Stream       38         Figure 6-6       Peak flood levels (1% AEP design scenarios), lower Mangakakahi Stream       39         Figure 6-7       Peak flood levels (2130 climate design scenarios), Utuhina Stream       39         Figure 6-8       Peak flood levels (current climate design scenarios), Utuhina Stream       40         Figure 6-9       Peak flood levels (1% AEP design scenarios), lower Utuhina Stream       40         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)       42         Figure 6-12       Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)       42         Figure 6-13       Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)       42         Figure 6-15       Flow hydrographs for 1% AEP storm, current climate, urban storm centre       43         Figure 6-17       Flow overtopping Old Taupo Rd, urban storm centre       43         Figure 6-17       Flow overtopping Old Taupo Rd, urban storm centre       44         Figure 6-18       Flood extent, current climate design scenarios                                                                                                                                                  | -           |                                                                                         |    |
| Figure 6-5Peak flood levels (2130 climate design scenarios), Mangakakahi Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •           |                                                                                         |    |
| Figure 6-6Peak flood levels (1% AEP design scenarios), lower Mangakakahi Stream39Figure 6-7Peak flood levels (2130 climate design scenarios), Utuhina Stream39Figure 6-8Peak flood levels (current climate design scenarios), Utuhina Stream40Figure 6-9Peak flood levels (1% AEP design scenarios), lower Utuhina Stream40Figure 6-10Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)41Figure 6-11Flow hydrographs for Utuhina Stream at Depot St recorder site (upper Utuhina storm centre)41Figure 6-12Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)42Figure 6-13Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)42Figure 6-14Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)42Figure 6-15Flow hydrographs for 1% AEP storm, current climate, urban storm centre43Figure 6-16Flow overtopping Old Taupo Rd, urban storm centre43Figure 6-17Flow dextent, current climate design scenarios45Figure 6-18Flood extent, 2130 climate design scenarios45Figure 6-20Flood map, 2% AEP current climate47Figure 6-21Flood map, 1% AEP current climate48Figure 6-22Flood map, 0.2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                         | •           |                                                                                         |    |
| Figure 6-7Peak flood levels (2130 climate design scenarios), Utuhina Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •           |                                                                                         |    |
| Figure 6-8       Peak flood levels (current climate design scenarios), Utuhina Stream       40         Figure 6-9       Peak flood levels (1% AEP design scenarios), lower Utuhina Stream       40         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Utuhina Stream at Depot St recorder site (upper Utuhina storm centre)       41         Figure 6-12       Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)       42         Figure 6-13       Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)       42         Figure 6-14       Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)       42         Figure 6-15       Flow hydrographs for 1% AEP storm, current climate, urban storm centre       43         Figure 6-16       Flow hydrographs for 1% AEP storm, 2130 climate, urban storm centre       43         Figure 6-17       Flow overtopping Old Taupo Rd, urban storm centre       44         Figure 6-18       Flood extent, current climate design scenarios       45         Figure 6-20       Flood map, 2% AEP current climate       47         Figure 6-21       Flood map, 1% AEP current climate       48         Figure 6-22       Flood map, 0.2% AEP current climate       49         Figure 6-23                                                                                                                                                                                   | •           |                                                                                         |    |
| Figure 6-9       Peak flood levels (1% AEP design scenarios), lower Utuhina Stream       40         Figure 6-10       Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)       41         Figure 6-11       Flow hydrographs for Utuhina Stream at Depot St recorder site (upper Utuhina storm centre)       41         Figure 6-12       Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)       42         Figure 6-13       Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)       42         Figure 6-14       Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)       42         Figure 6-15       Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)       42         Figure 6-15       Flow hydrographs for 1% AEP storm, current climate, urban storm centre       43         Figure 6-16       Flow overtopping Old Taupo Rd, urban storm centre       43         Figure 6-17       Flood extent, current climate design scenarios       45         Figure 6-18       Flood extent, 2130 climate design scenarios       46         Figure 6-20       Flood map, 2% AEP current climate       47         Figure 6-21       Flood map, 1% AEP current climate       48         Figure 6-23       Flood map, 2% AEP current climate       49         Figure 6-24       Flood                                                                                                                                                                                  | •           |                                                                                         |    |
| Figure 6-10Flow hydrographs for Utuhina Stream at Depot St recorder site (urban storm centre)41Figure 6-11Flow hydrographs for Utuhina Stream at Depot St recorder site (upper Utuhina storm centre)41Figure 6-12Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)42Figure 6-13Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)42Figure 6-14Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)42Figure 6-15Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)42Figure 6-15Flow hydrographs for 1% AEP storm, current climate, urban storm centre43Figure 6-16Flow hydrographs for 1% AEP storm, 2130 climate, urban storm centre43Figure 6-17Flow overtopping Old Taupo Rd, urban storm centre44Figure 6-18Flood extent, current climate design scenarios45Figure 6-20Flood map, 2% AEP current climate47Figure 6-21Flood map, 1% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •           |                                                                                         |    |
| Figure 6-11       Flow hydrographs for Utuhina Stream at Depot St recorder site (upper Utuhina storm centre)       41         Figure 6-12       Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)       42         Figure 6-13       Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)       42         Figure 6-14       Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)       42         Figure 6-15       Flow hydrographs for 1% AEP storm, current climate, urban storm centre       43         Figure 6-16       Flow hydrographs for 1% AEP storm, 2130 climate, urban storm centre       43         Figure 6-16       Flow overtopping Old Taupo Rd, urban storm centre       44         Figure 6-18       Flood extent, current climate design scenarios       45         Figure 6-19       Flood extent, 2130 climate design scenarios       46         Figure 6-20       Flood map, 2% AEP current climate       47         Figure 6-21       Flood map, 1% AEP current climate       48         Figure 6-23       Flood map, 2% AEP current climate       49         Figure 6-24       Flood map, 1% AEP 2130 climate       50         Figure 6-24       Flood map, 1% AEP 2130 climate       50                                                                                                                                                                                                                                                                                                                       |             |                                                                                         |    |
| centre)41Figure 6-12Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)42Figure 6-13Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)42Figure 6-14Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)42Figure 6-15Flow hydrographs for 1% AEP storm, current climate, urban storm centre43Figure 6-16Flow hydrographs for 1% AEP storm, 2130 climate, urban storm centre43Figure 6-17Flow overtopping Old Taupo Rd, urban storm centre44Figure 6-18Flood extent, current climate design scenarios45Figure 6-19Flood extent, 2130 climate design scenarios46Figure 6-20Flood map, 2% AEP current climate47Figure 6-21Flood map, 1% AEP current climate48Figure 6-23Flood map, 2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                         |    |
| Figure 6-12Flow hydrographs for Utuhina Stream at Old Taupo Rd (upper Utuhina storm centre)42Figure 6-13Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)42Figure 6-14Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)42Figure 6-15Flow hydrographs for 1% AEP storm, current climate, urban storm centre43Figure 6-16Flow hydrographs for 1% AEP storm, 2130 climate, urban storm centre43Figure 6-17Flow overtopping Old Taupo Rd, urban storm centre44Figure 6-18Flood extent, current climate design scenarios45Figure 6-20Flood map, 2% AEP current climate47Figure 6-21Flood map, 1% AEP current climate48Figure 6-23Flood map, 2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0           |                                                                                         | 41 |
| Figure 6-13Flow hydrographs for Mangakakahi Stream at Old Taupo Rd (urban storm centre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figure 6-12 |                                                                                         |    |
| Figure 6-14Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)42Figure 6-15Flow hydrographs for 1% AEP storm, current climate, urban storm centre.43Figure 6-16Flow hydrographs for 1% AEP storm, 2130 climate, urban storm centre.43Figure 6-17Flow overtopping Old Taupo Rd, urban storm centre.44Figure 6-18Flood extent, current climate design scenarios45Figure 6-19Flood extent, 2130 climate design scenarios46Figure 6-20Flood map, 2% AEP current climate47Figure 6-21Flood map, 1% AEP current climate48Figure 6-22Flood map, 0.2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                                         |    |
| Figure 6-15Flow hydrographs for 1% AEP storm, current climate, urban storm centre.43Figure 6-16Flow hydrographs for 1% AEP storm, 2130 climate, urban storm centre.43Figure 6-17Flow overtopping Old Taupo Rd, urban storm centre.44Figure 6-18Flood extent, current climate design scenarios45Figure 6-19Flood extent, 2130 climate design scenarios.46Figure 6-20Flood map, 2% AEP current climate47Figure 6-21Flood map, 1% AEP current climate48Figure 6-22Flood map, 0.2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                         |    |
| Figure 6-16Flow hydrographs for 1% AEP storm, 2130 climate, urban storm centre43Figure 6-17Flow overtopping Old Taupo Rd, urban storm centre44Figure 6-18Flood extent, current climate design scenarios45Figure 6-19Flood extent, 2130 climate design scenarios46Figure 6-20Flood map, 2% AEP current climate47Figure 6-21Flood map, 1% AEP current climate48Figure 6-22Flood map, 0.2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                         |    |
| Figure 6-17Flow overtopping Old Taupo Rd, urban storm centre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                         |    |
| Figure 6-18Flood extent, current climate design scenarios45Figure 6-19Flood extent, 2130 climate design scenarios46Figure 6-20Flood map, 2% AEP current climate47Figure 6-21Flood map, 1% AEP current climate48Figure 6-22Flood map, 0.2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •           |                                                                                         |    |
| Figure 6-19Flood extent, 2130 climate design scenarios.46Figure 6-20Flood map, 2% AEP current climate.47Figure 6-21Flood map, 1% AEP current climate.48Figure 6-22Flood map, 0.2% AEP current climate.49Figure 6-23Flood map, 2% AEP 2130 climate.50Figure 6-24Flood map, 1% AEP 2130 climate.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                         |    |
| Figure 6-20Flood map, 2% AEP current climate47Figure 6-21Flood map, 1% AEP current climate48Figure 6-22Flood map, 0.2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                         |    |
| Figure 6-21Flood map, 1% AEP current climate48Figure 6-22Flood map, 0.2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                         |    |
| Figure 6-22Flood map, 0.2% AEP current climate49Figure 6-23Flood map, 2% AEP 2130 climate50Figure 6-24Flood map, 1% AEP 2130 climate51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                                                         |    |
| Figure 6-23         Flood map, 2% AEP 2130 climate         50           Figure 6-24         Flood map, 1% AEP 2130 climate         51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                         |    |
| Figure 6-24 Flood map, 1% AEP 2130 climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                         |    |



## TABLES

| Table 3-1 | MIKE 21 roughness                        |
|-----------|------------------------------------------|
| Table 6-1 | Design storm and lake level combinations |



## 1 Previous modelling

A summary of previous hydraulic modelling is given in DHI (2017). A brief outline of the model studies is given below.

# 2 Introduction

The Utuhina Stream drains a south-western catchment of Lake Rotorua, of around 60 km<sup>2</sup> (Figure 2-1). The stream and its major tributaries (in particular, the Mangakakahi and Otamatea Streams (Figure 2-2)) flow through residential and industrial areas within Rotorua City before discharging to the lake and have a long history of flooding and erosion.




Figure 2-1 Utuhina catchment

BOPRC has responsibility for stream management, flood protection and erosion control in lower Utuhina catchment, as part of the Kaituna Catchment Control Scheme. The Regional Council's Rivers and Drainage Asset Management Plan 2018-2068 (BOPRC, 2018) specifies protection against a 1% AEP (annual exceedance probability) flood event, downstream of Old Taupo Road.

In 2017 BOPRC initiated a new project to determine the flood and erosion risk to properties adjacent the Utuhina Stream and then develop appropriate mitigation options. The study area includes the entire Utuhina Stream Catchment.

The project has been divided into four phases:

- Phase 1: Gap analysis and preparation of the project scope
- Phase 2: Data collection and model build
- Phase 3: Calibration, design simulations, mapping and reporting
- Phase 4: Mitigation options



Phase 1 was completed in 2017 (DHI, 2017).

This current report describes the modelling and results from Phases 2 and 3. Phase 2 was largely completed in 2018/19, while most of Phase 3 was carried out in 2019/20.

The completion of Phase 3 was delayed in 2020 due to a need to model the effects of Plan Change 2 (Pukehangi Heights) pursued by Rotorua Lakes Council (RLC) under a fast-track process. Modelling for the Pukehangi Plan Change has been outlined in evidence presented at the hearing for the Plan Change<sup>1</sup> (Wallace, 2020), but it drew upon the modelling work described in this current report.

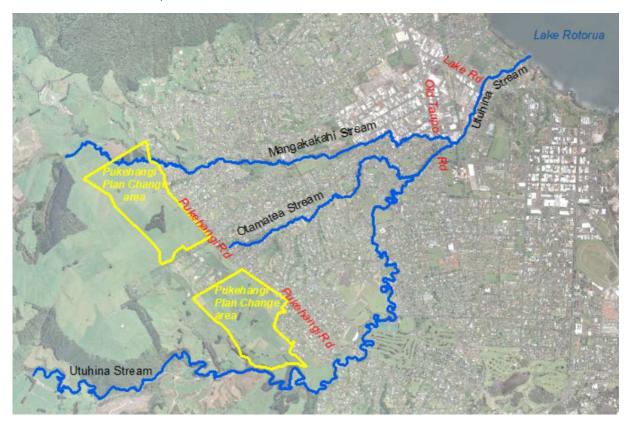



Figure 2-2 Major tributaries and features of interest

<sup>&</sup>lt;sup>1</sup> https://letstalk.rotorualakescouncil.nz/District-Plan-Plan-Change-2-Pukehangi-Heights/news\_feed/executive-summaries-presented-at-the-hearing



### 2.1 Utuhina Stream

The first computational hydraulic model study was carried out in 2003 by Riley Consultants (2003) for BOPRC. The 1D model, built with MIKE 11 software, represented the Utuhina Stream between Old Taupo Road and the lake. Over the next ten years the model was revised and updated with additional calibration data (Wallace, 2006 and 2011).

In 2013, the model was reconfigured into a combined 1D-2D model, using MIKE FLOOD software (Wallace, 2014). The model extended 300-350m upstream of Old Taupo Road in both the Mangakakahi and Utuhina branches.

### 2.2 Mangakakahi Stream

Barnett and McMurray (2009) built a 1D model that covered the main branch of the Mangakakahi Stream from Pukehangi Road (i.e. the upstream extent of the urban area) to the Utuhina confluence. The model was built using Aulos software.



# 3 MIKE FLOOD model

### 3.1 Model software

The model software used for this current study is MIKE FLOOD 2017 (SP2). This software simulates both channel flow and overland flow, dynamically linking them during a simulation. Channel flow is represented with a 1-dimensional (1-D) MIKE 11 model, while overland flow is represented with a 2-dimensional (2-D) MIKE 21 FM model.

Figure 3-1 shows the model extent.

Figure 3-1 Model layout

### 3.2 MIKE 11

### 3.2.1 Model branches

The MIKE 11 model consists of branches representing the three main stream channels (Utuhina, Otamatea and Mangakakahi) as well as short lengths of tributary channels and culverts (Figure 3-1).

Some small lengths of additional 1-D channel (dotted line in Figure 3-2) were added for the 2017 and 2018 event calibration simulations and the design scenarios, to reflect physical works and development in the Amohau St area. Most of the additional branches are closed culverts.





Figure 3-2 Additional model branches in Amohau St commercial development for design simulations and later calibration events

### 3.2.2 Cross-sections

Survey cross sections from a 2018 survey by Beca (2018) were used for most of the lengths of the three main streams. The location of the sections is given in Appendix D.

In addition, cross-sections surveyed for Rotorua Lakes Council in the early 2000s were used for the Mangakakahi tributaries as well as to supplement the 2018 cross-sections for the Mangakakahi Stream itself where there were large gaps between those 2018 cross-sections. In a few locations in tributary channels, the survey data were supplemented with approximate sections derived from LiDAR.

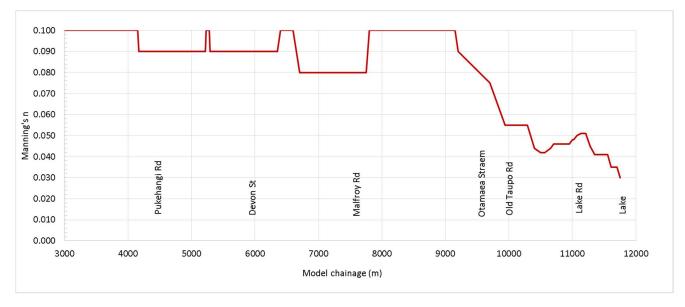
For the 2011 calibration events however, from Old Taupo Road to the lake, 2018 cross-sections were replaced by sections dating from 2007 and 2010. Those earlier sections were considered to better represent the stream geometry than post-flood sections from 2011 (as explained in Wallace (2014)) or 2018 sections.

### 3.2.3 Structures

Bridges and culverts were inserted into the model where appropriate. Information for the structures has come from the various surveys noted above. In addition, 360° photos taken by Beca for each cross-section and bridge, along with information gleaned during site visits, have assisted in setting up the structures in the model.

The Old Taupo Road bridge over the Utuhina is hydraulically inefficient and in previous modelling (Wallace, 2006) the pier ratio was increased and the soffit lowered to allow for debris blockage, for calibration to the May 1999 flood and for design simulations. That assumption was




maintained in the 2013 modelling work and has again been kept for the current study, both for calibration and design simulations.

In this current study, other than one design simulation being carried out with debris blockage of the Old Taupo Road bridge over the Mangakakahi and of the Lake Road bridge, all other bridges are assumed not to have debris blockage.

### 3.2.4 Channel resistance

After model calibration, the adopted channel resistance profiles for the Utuhina Stream are as shown in Figure 3-3. (Upstream of chainage 3000 m, the Manning's n value remains at 0.100).

Values downstream of Old Taupo Road are largely based on the values adopted in previous modelling (calibration to the January2011 events), described in Wallace (2014). However they have been increased by 10% for around 600 m downstream of Old Taupo Road in this current exercise to improve the calibration. Values upstream of Old Taupo Road were derived from fitting model predictions to the 2017 debris levels (Figure 5-33).



#### Figure 3-3 Channel resistance, Utuhina Stream

The high Manning's n value for most of the study reach reflects the sinuosity of the stream, as well as the stream being narrow with overhanging vegetation in many places.

There is very little calibration information along the Mangakakahi and Otamatea Streams, so the Utuhina Stream channel resistance values have been taken as a guide for those streams. The Mangakakahi Stream values range from 0.045 to 0.100, while a value of 0.080 is adopted for the Otamatea Stream.

### 3.3 MIKE 21

### 3.3.1 Model topography and bathymetry

The model topography for the MIKE 21 flexible mesh (FM) component was in general derived from the 2011 LiDAR survey. However recent 2018 LiDAR data were used to update areas of the model for the design events and relevant calibration events where there have been



topographical changes since 2011: around Lake Road, Amohau Street and the Baxendale subdivision (Figure 3-4).

A small step of around 100 mm in the 2011 LiDAR data is apparent along an east-west line, approximately 70 m north of Pukuatua Street and extending at least as far west as Sunset Road and as far east as Ranolf Street. This step is presumably an artefact of the processing of the LiDAR data by the supplier. It has been removed in the MIKE 21 model topography in the vicinity of Amohau Street by the use of the 2018 LiDAR data, but it remains in the model outside of that area. However, the error is within the LiDAR accuracy<sup>2</sup> and in any case the affected floodplain is only inundated in the larger and climate change scenarios.

Lake bathymetry information is less detailed, but sufficient information has been obtained from LINZ data.



Figure 3-4 Area where model updated with 2018 LiDAR for design events and relevant calibration events

Other than three short sections of small tributary open channels which have quadrangular elements, the 2-D model mesh consists of triangular elements, averaging around 5 m<sup>2</sup> in area.

<sup>&</sup>lt;sup>2</sup> According to the metadata for the 2011 LiDAR (NZAM, 2011), the "project specified vertical accuracy of +/-0.25m (68% confidence interval) has been met".



### 3.3.2 Floodplain roughness

The 2-D roughness was derived from aerial photographs and LCDB version 4.1. The roughness was applied as a *.dfs2* file at 2 x 2 m resolution. The Manning's n values used for each land use type are outlined in Table 3-1.

| Table 3-1 | MIKE 21 roughness |  |
|-----------|-------------------|--|
|-----------|-------------------|--|

| Landuse type     | Manning's n |
|------------------|-------------|
| Bush/dense trees | 0.080-0.100 |
| Playing fields   | 0.033       |
| Water bodies     | 0.025       |
| Roads            | 0.020       |
| Industrial area  | 0.100       |
| Residential area | 0.100       |
| Pasture          | 0.050       |
| Large buildings  | 0.200       |



# 4 Hydrology

### 4.1 Model inflows

Inflows to the model, for both calibration and design events, are derived from a Non-Linear Reservoir (NLR) model of the Utuhina catchment. A description of the NLR model is given in a report by West (2021). In summary however, the catchment has been broken up into a number of subcatchments and rainstorms applied to each. The rainstorms are spatially varying and are based on rain radar records for the calibration events and HIRDS v4 nested storms for the design events. Calibration of the hydrological model has been an iterative process run in conjunction with the hydraulic model calibration.

The outputs of the NLR model are flow hydrographs that have been applied either as point or distributed inflows to the MIKE 11 1-D component of the hydraulic model. Approximately 75 such hydrographs have been applied to the hydraulic model.

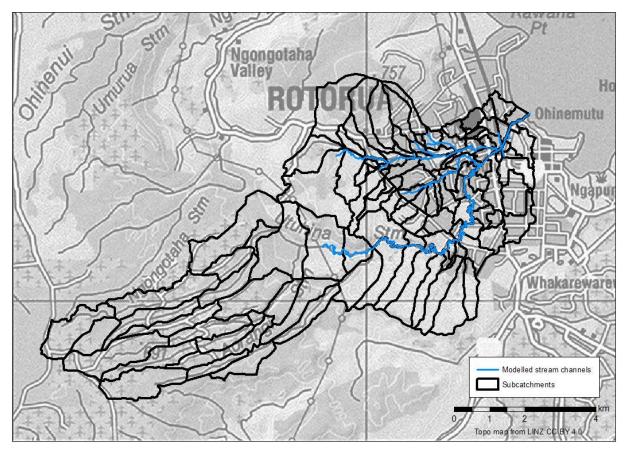



Figure 4-1 Utuhina catchment and subcatchments used in NLR model

### 4.2 Lake levels

The 2011 and 2014 calibration simulations have used the record from the Town Wharf lake level recorder. That recorder was decommissioned shortly afterwards and the other calibration simulations use records from the Mission Bay site on the opposite side of the lake. The



difference in lake levels between the two recorder sites will have little impact on model results in the Utuhina Stream.

Lake levels for design events are assumed constant. The values assumed for each are described in section 6.1



# 5 Model calibration

Five storms have been modelled:

- 23 January 2011
- 29 January 2011 (Cyclone Wilma)
- 20 August 2014
- 11-13 March 2017
- 29-30 April 2018

As there was not extensive flooding outside the stream channels in these events, initial model simulations were made with just the MIKE 11 component of the model. However, final runs were made with the full MIKE FLOOD model.

Comparisons of model data with recorded or observed data are given in the following sections for each calibration event. For each event, recorded level and flow data (according to rating curves) are available at the three sites shown in Figure 5-1. Peak flood levels were measured (from debris levels) for the two January 2011 floods, the 2017 flood and the 2018 flood, although the measurements do not cover the entire model area. For the 2014 event, two flood photos for the Otamatea Stream have been obtained.

A general commentary on results is provided in section 5.6

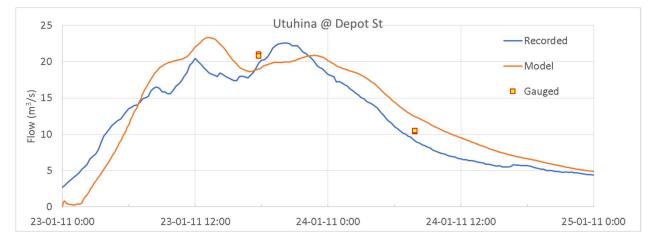
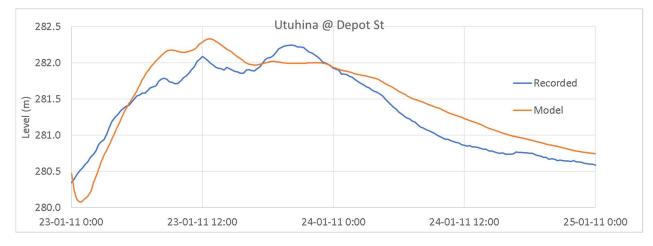
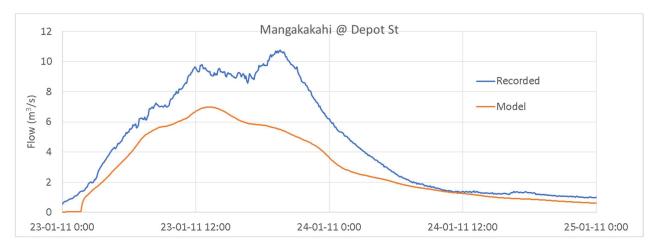



Figure 5-1 Recorder sites

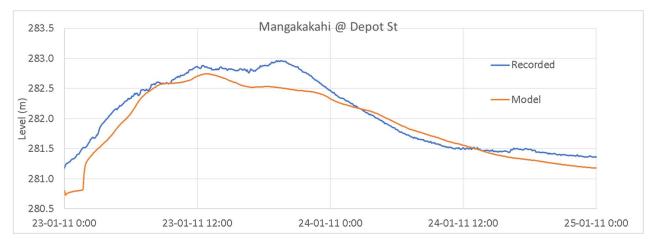



### 5.1 23 January 2011

Calibration results at the recorder sites are given in Figure 5-2 to Figure 5-7. Note there were gaugings at the Utuhina @ Depot St site just before the peak and on the recession. The gauging results actually fit slightly better to the rated curve that BOPRC had adopted in 2013 than to the more recent revision shown in Figure 5-2 (refer to the email correspondence in Appendix C.1)

















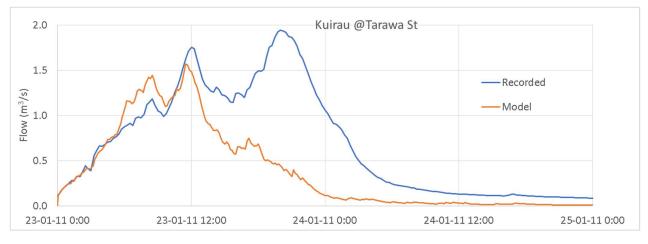




Figure 5-6 Kuirau @ Tarawa Rd recorder, 23 January 2011 event, recorded and model flows



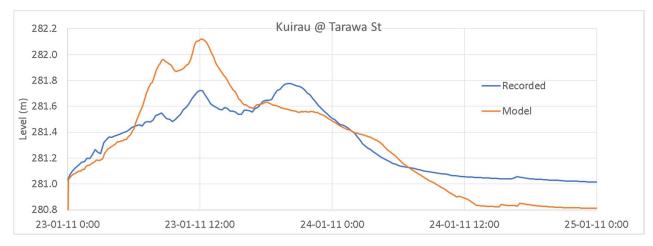



Figure 5-7 Kuirau @ Tarawa Rd recorder, 23 January 2011 event, recorded and model levels

The model underpredicts the discharge at the Mangakakahi recorder (Figure 5-5), but the discrepancy is less marked for the water level hydrograph (Figure 5-4). This is a pattern noted for the other calibration events also, and in part may be related to rating uncertainties mentioned in section 5.6.

BOPRC measured peak flood levels downstream of Old Taupo Road for the event, while the then RDC (now RLC) measured them downstream of Lake Road. Model predictions are compared to the measurements in Figure 5-8. The RDC measurements seem to be too low (as previously reported in Wallace (2014)), but the model gives a reasonable match to the BOPRC levels. The average difference between the model and the BOPRC debris levels is 73 mm, with the average absolute difference being 153 mm.

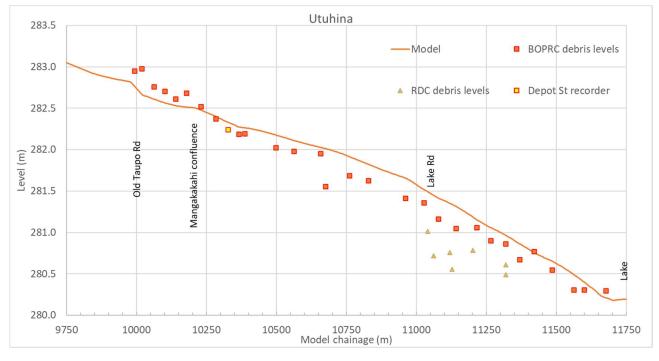
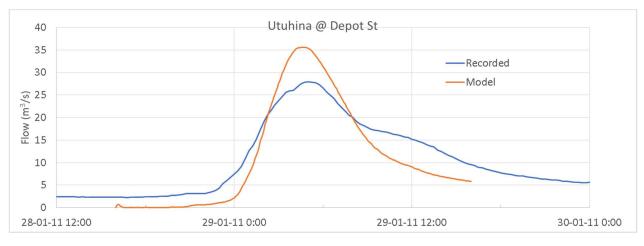
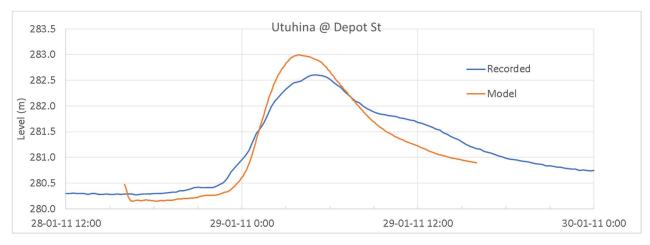
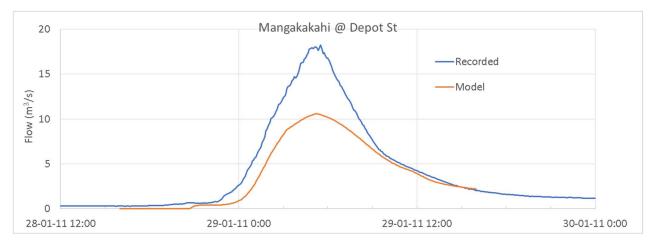




Figure 5-8 Peak flood levels, Utuhina Stream, 23 January 2011 event

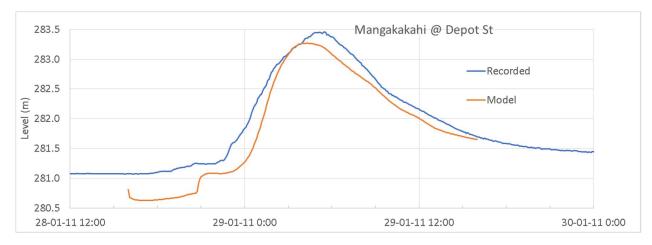



# 5.2 29 January 2011




### Calibration results at the recorder sites are given in Figure 5-9 to Figure 5-14.

















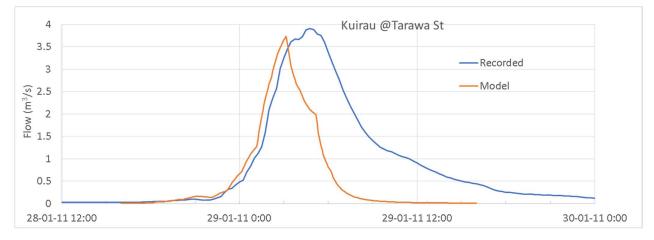




Figure 5-13 Kuirau @ Tarawa Rd recorder, 29 January 2011 event, recorded and model flows

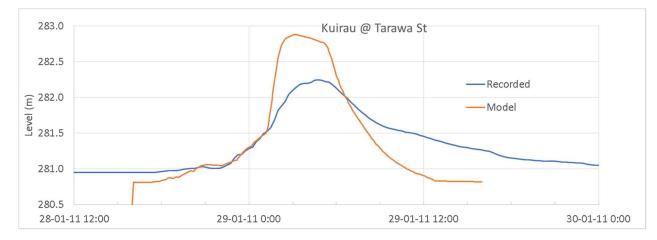



Figure 5-14 Kuirau @ Tarawa Rd recorder, 29 January 2011 event, recorded and model levels

Figure 5-15 compares model predictions of peak flood level in the Utuhina Stream with debris levels measured by BOPRC and RDC. From Devon St to around chainage 8300 m, the model predicts lower levels than were recorded by RLC. However, downstream of Old Taupo Road the model overpredicts measured levels by an average of 376 mm (Figure 5-15). As for the 23<sup>rd</sup> January event, the RDC levels downstream of Old Taupo Road appear low.



Note also that BOPRC classified its measurements according to the degree of confidence it had in the debris levels (measuring debris levels is subject to a degree of interpretation). Figure 5-15 shows the low confidence values separately to the other points (high or medium confidence). The low confidence points perhaps sit a little below the others, but the difference is not significant.

Given that Figure 5-9 shows the model significantly overpredicting flows for the Utuhina @ Depot St site, an alternative simulation has been carried out with the model stripped to the area below that recorder and run with recorded inflows. Only the 1-D component of the model has been used (that some floodplain areas are shown as flooded in the full model simulation is largely due to model overpredictions). The Utuhina @ Depot St inflows were taken from the rating as of 2013 (with a peak of 31.1 m<sup>3</sup>/s, slightly higher for the current rating of 27.9 m<sup>3</sup>/s shown in Figure 5-9). Inflows for the Kuirau @ Tarawa Rd site are also based on the 2013 rating, with a peak of 2.7 m<sup>3</sup>/s; even though that rating had issues, the current rating likely overestimates flows (see Appendix C.1).

The alternative simulation gives a much better fit to the BOPRC recorded levels (Figure 5-16), with an average error of only 30 mm (underprediction) and thus gives confidence in the Manning's n values adopted for the lower reaches of the Utuhina Stream.

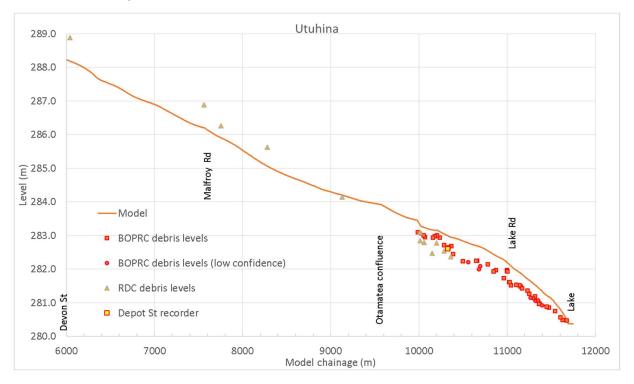



Figure 5-15 Peak flood levels, Utuhina Stream (Devon St to Lake), 29 January 2011 event



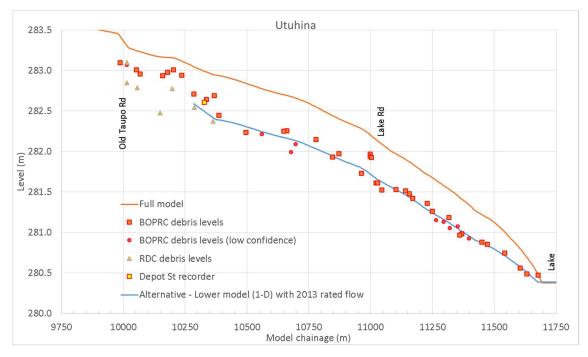
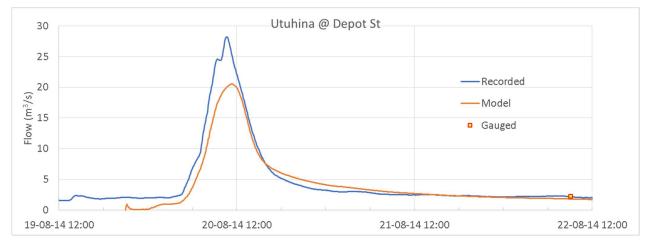
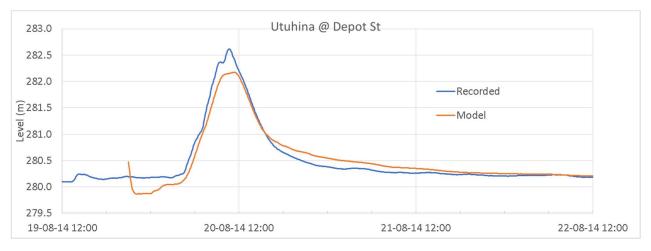




Figure 5-16 Peak flood levels, Utuhina Stream downstream of Old Taupo Road, 29 January 2011 event


## 5.3 20 August 2014



Calibration results at the recorder sites are given in Figure 5-17 to Figure 5-22.









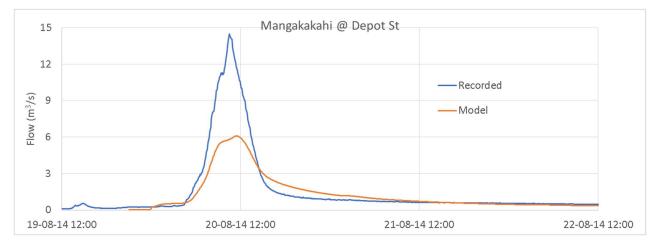



Figure 5-19 Mangakakahi @ Depot St recorder, 20 August 2014 event, recorded and model flows

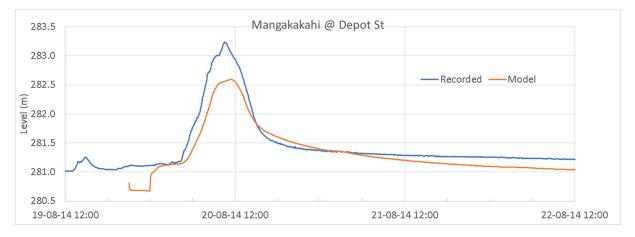
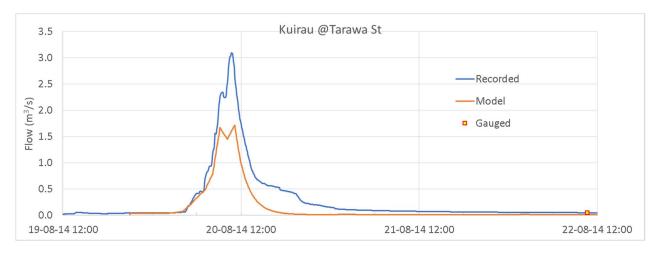
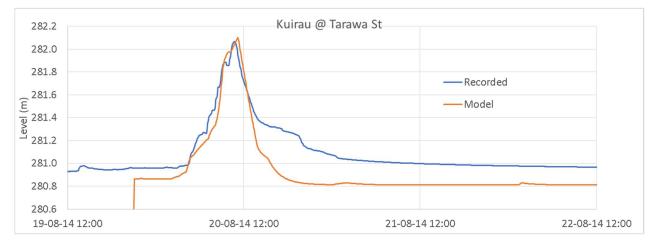





Figure 5-20 Mangakakahi @ Depot St recorder, 20 August 2014 event, recorded and model levels











Photographs of floodwaters from the Otamatea Stream during the event were provided in WSP-Opus (2018) and have been reproduced in Figure 5-23 (Sunset Road, upstream culvert<sup>3</sup>) and Figure 5-24 (Ford Road). Model predictions of flood depths at the same sites are shown in Figure 5-25 and Figure 5-26 respectively (red arrows show the direction of the photographs).

The predictions show a general agreement with the photographs but a more refined comparison indicates an underprediction. Comparing the water depths and extents in the photographs with the actual ground levels according to LiDAR data suggests that the flood is approximately 286 m RL level at the Sunset Road culvert and approximately 286.1-286.2 m RL at the Ford Road culvert. Model predictions are around 200mm lower at each location.

<sup>&</sup>lt;sup>3</sup> The Otamatea Stream passes through two culverts under Sunset Road, at chainage 3300 m and chainage 3630 m. The former is shown in the flood photographs. Ford Road is further upstream, at chainage 2880 m.





Figure 5-23 Photographs of flooding at Sunset Road, Otamatea Stream (upstream culvert), August 2014



Figure 5-24 Photograph of flooding at Ford Road, Otamatea Stream, August 2014



Figure 5-25 Flood depths (model prediction), Sunset Road, Otamatea Stream (upstream culvert), August 2014





Figure 5-26 Flood depths (model prediction), Ford Road, Otamatea Stream August 2014

### 5.4 11-13 March 2017

Calibration results at the recorder sites are given in Figure 5-27 to Figure 5-32. Results for the revised NLR (ultimately used for the design scenarios as outlined in section 6.1.1) are shown by a grey dotted line in the figures.

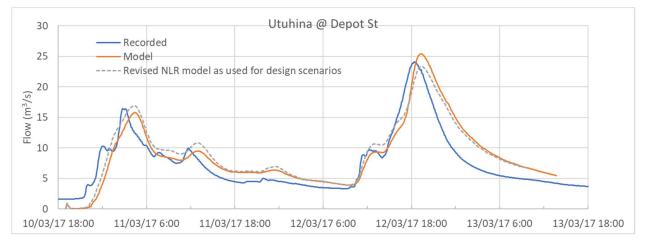



Figure 5-27 Utuhina @ Depot St recorder, 11-13 March 2017 event, recorded and model flows



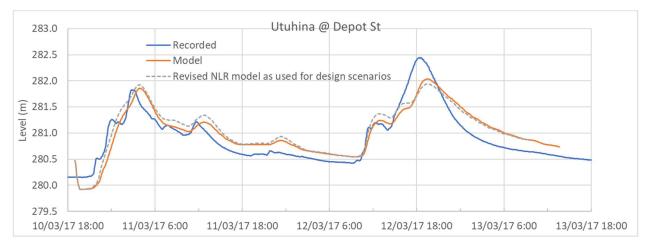
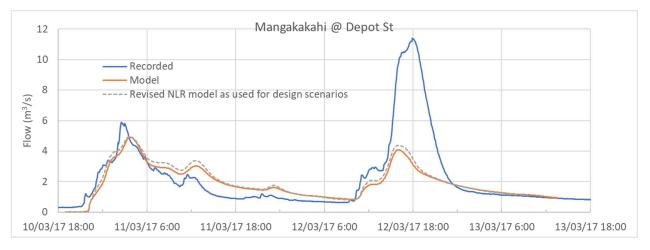




Figure 5-28 Utuhina @ Depot St recorder, 11-13 March 2017 event, recorded and model levels





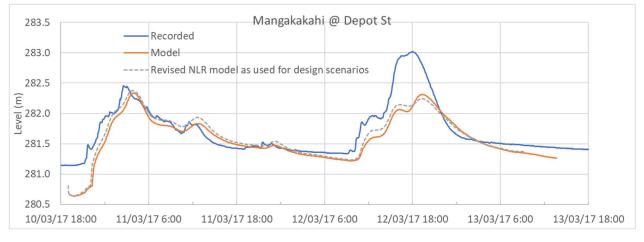
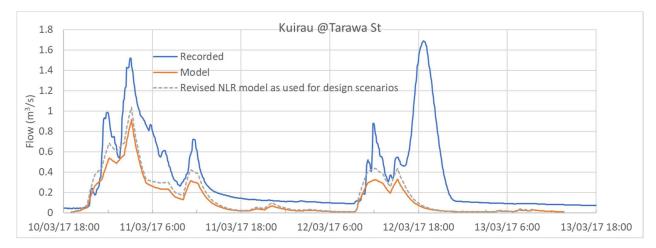
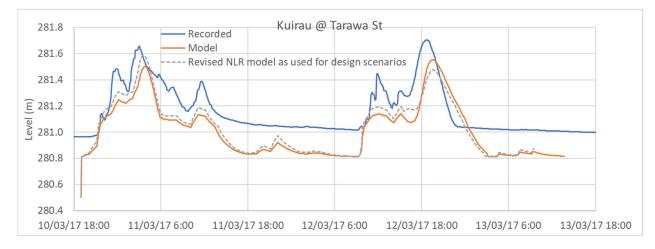





Figure 5-30 Mangakakahi @ Depot St recorder, 11-13 March 2017 event, recorded and model levels









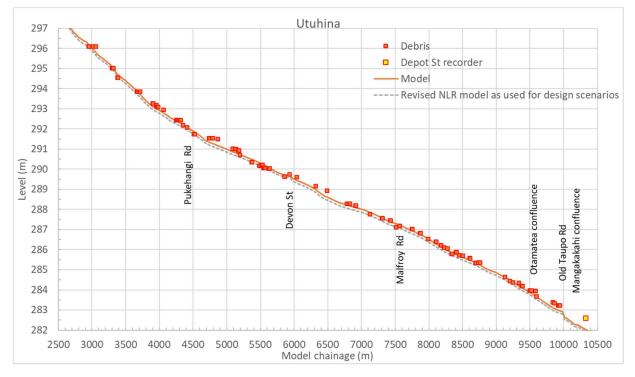




Figure 5-33 and Figure 5-34 compare predicted peak levels with measured debris levels for the Utuhina and Otamatea Streams, respectively. A full listing of the debris points and model predictions is provided in Appendix E. The average difference between the predicted and measured levels for the Utuhina Stream is around -66 mm (i.e. net underprediction), while for the Otamatea it is 137 mm (net overprediction). (Note that there is some interpretation and judgement as to the correlation of each debris point with model centreline chainage, given the rather sinuous nature of the stream channel.)

Results for the revised NLR are again shown by a grey dotted line in the figures. The average difference between the measured debris levels and the predicted peak levels for the Utuhina Stream is 204 mm, while it is almost unchanged for the Otamatea Stream.







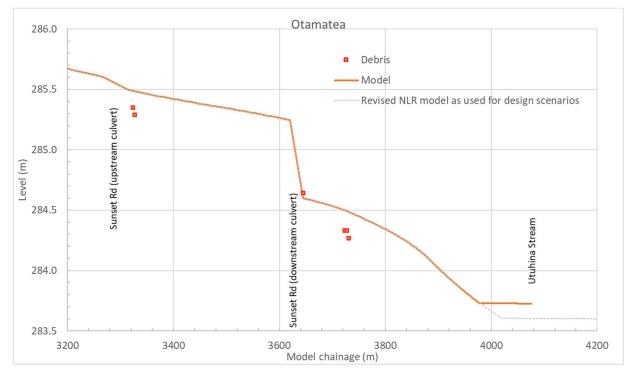
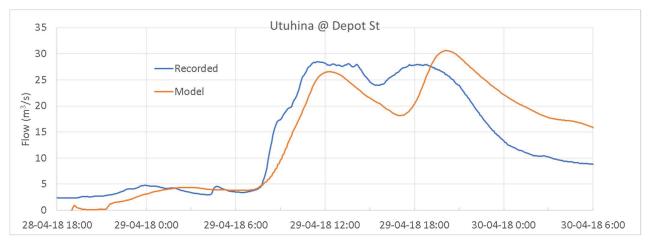
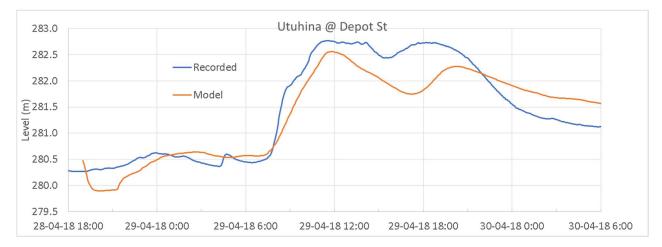
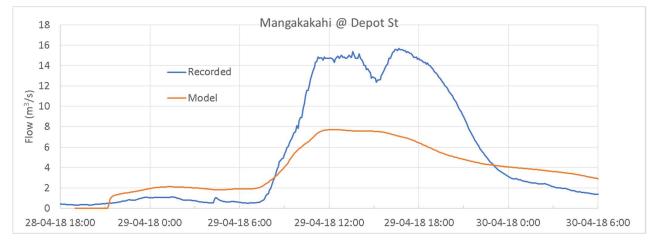




Figure 5-34 Peak flood levels, Otamatea Stream, 11-13 March 2017 event

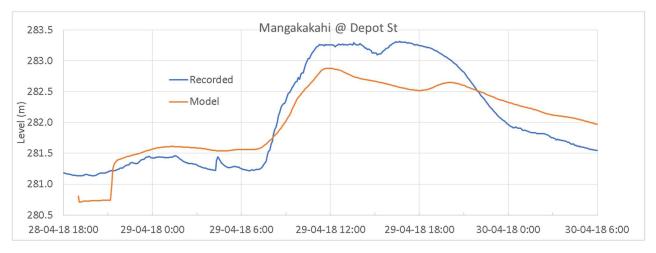



### 5.5 29 April 2018




Calibration results at the recorder sites are given in Figure 5-35 to Figure 5-40.

















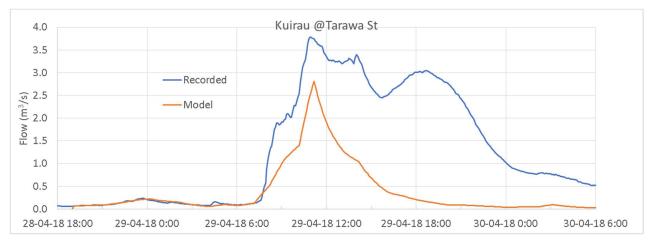




Figure 5-39 Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model flows

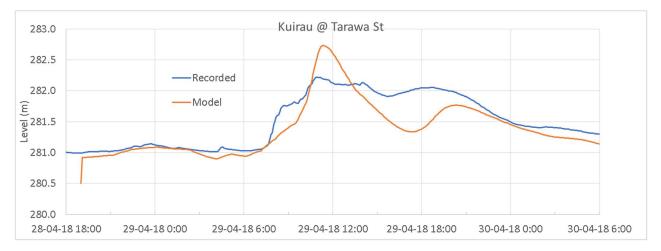



Figure 5-40 Kuirau @ Tarawa Rd recorder, 29 April 2018 event, recorded and model levels

RLC also recorded a number of flood levels on the floodplain, in areas where the stormwater network to the south of State Highway 30A was overwhelmed (Figure 5-41). However the model does not include the stormwater network and the model does not reproduce that flooding.



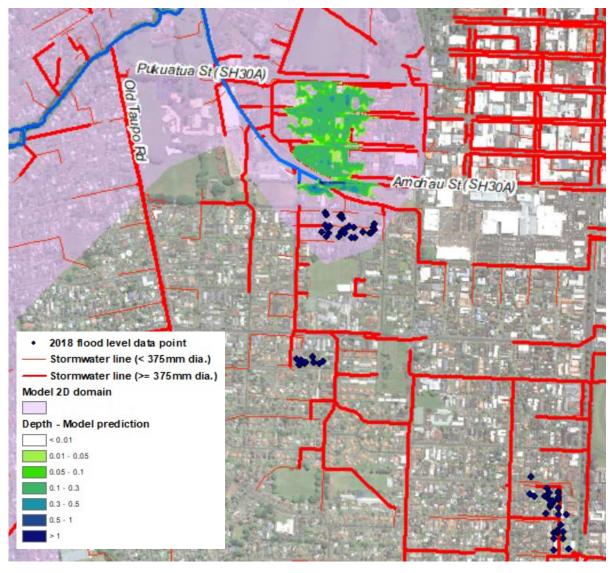



Figure 5-41 Recorded flood levels south of SH30A, April 2018 event

### 5.6 Discussion

Considerable effort has gone into the model calibration and a number of iterations of the hydrological model and hydraulic model were tested. By adjusting hydrological model parameters and Manning's n values, ultimately a satisfactory calibration has been achieved, even if there are variations in how well the model reproduces individual calibration events.

In the case of the January 2011 events, the rain radar data of the time had a coarse resolution with some gaps in the data (temporal and spatial). Thus, it is not surprising that the model did not predict results particularly well for the 29 January event, although results for the 23 January event appear reasonable. However, by stripping the model down to channels downstream of the known flows at the Utuhina and Kuirau recorders (rating uncertainties notwithstanding), the model was able to give a good prediction of the 29 January event.

Results for the 2014 event show some underprediction in levels at the Utuhina and Mangakakahi recorder sites, but this may be due to the underprediction of flows at the Utuhina



recorder. The final iteration of the hydrological model included adjustments to give more flow in the Otamatea and Utuhina Streams to address a greater underprediction in early results for this event, but any further adjustments would have compromised results for other events. The 200 mm underprediction at the two Otamatea locations for which photos were available is acceptable in this context.

The 2017 "event" actually consisted of two separate floods, but the hydrological model appears to have reproduced the shape of each (Figure 5-27). Debris levels for the event provided the basis for setting Manning's n values for the Utuhina Stream. Eventually, in tandem with hydrological model adjustments, a good fit to the debris levels was obtained. Results gave a good match to the peak levels at the Utuhina @ Depot St site for the first flood but were underestimated for the second.

The revised hydrological model used for the design simulations gave peak Utuhina Stream levels slightly lower (on average, 204 mm lower) than the debris levels. After discussion with BOPRC, it was agreed that for reasons of expediency, the calibration would not be further refined. Instead, it was agreed that the 500 mm freeboard for design levels (BOPRC, 2018) be increased by 200 mm.

For the 2018 event, which had a twin peak to the flood, the model provided a reasonable fit to the Utuhina @ Depot St recordings, although there is a discrepancy in the relative size of each of the peaks; the model results show a larger flow but lower level for the second peak.

This last point highlights the inconsistent patterns of the model Q-H curves at the recorder sites. Figure 5-42 and Figure 5-43 show the Q-H curves from model results for the Utuhina and Mangakakahi recorder sites, respectively, and compare them to the adopted rating curves at the site (derived from level and flow data provided). Clearly there is a large range in flood level for any given flow.

For the Utuhina recorder site, the backwater effect of the two side drains entering the channel just downstream will have a significant effect on levels at the site (Figure 5-44). In the 2018 event, for example, the model predicts a total of around 14 m<sup>3</sup>/s coming from those two drains for the first peak (compared to around 26 m<sup>3</sup>/s predicted in the main Utuhina channel), whereas almost no flow is predicted from them in the second peak (Figure 5-45).



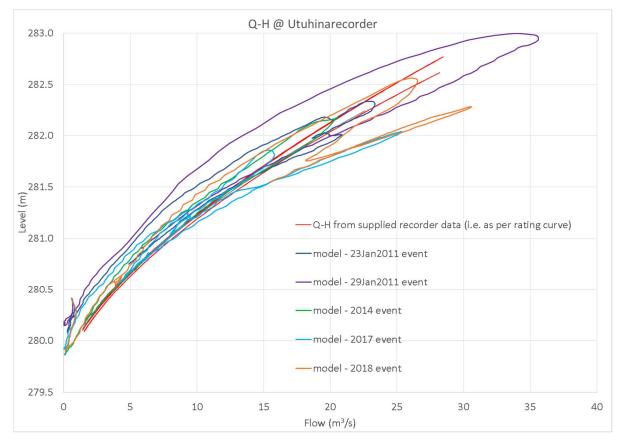



Figure 5-42 Q-H curve for Utuhina @ Depot St



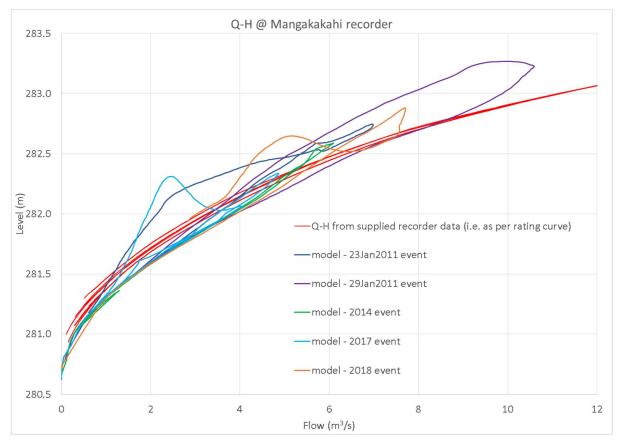



Figure 5-43 Q-H curve for Mangakakahi @ Depot St





Figure 5-44 Side drains entering Utuhina Stream downstream of recorder site

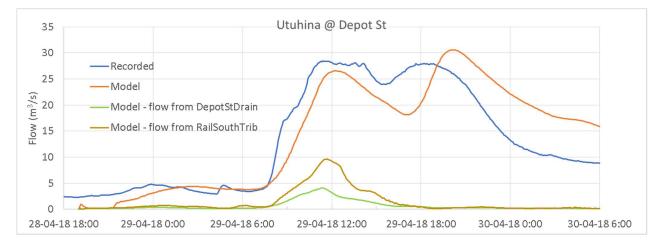



Figure 5-45 Flows at Utuhina @ Depot St recorder and model flows from side drains, April 2018 event

Likewise, water levels at the Mangakakahi recorder site will be strongly influenced by the backwater effect of the Utuhina Stream. Any underprediction of water levels at the Utuhina recorder site will likely manifest themselves in underpredictions at the Mangakakahi recorder site. The Mangakakahi recorder site is maintained by NIWA and it is unclear how well the site is rated or what gaugings have been carried out.



The Kuirau recorder site has only ever been gauged at low flow gaugings, and even that only with difficulty, so the rating has high uncertainty at flood flows. (Refer Appendix C.1). However, the contribution of the Kuirau Stream to Utuhina flows is minor.



## 6 Design scenarios

The following design storm scenarios have been modelled:

- 2% AEP (50-year return period)
- 1% AEP (100-year return period)
- 0.2% AEP (500-year return period)

For each, two storm centres have been modelled: one on the upper Utuhina catchment and one on the urban area. The former gives more flow in the Utuhina Stream than the latter, while the latter gives more flow in the Mangakakahi and Otamatea Streams than the former.

Each return period and storm centre scenario was modelled with current climate conditions and with 3.68°C of warming (RCP 8.5 to 2130).

In addition, a 1% AEP storm (current climate and centred on the urban area) was modelled with debris blockage on selected bridges. (Refer section 3.2.3)

Thus, a total of 13 design simulations have been performed.

### 6.1 Design model assumptions

#### 6.1.1 Design hydrology

As has been indicated in sections 4.1, 5.4 and 5.6, the NLR model used for calibration was slightly modified for design simulations. During work for the Pukehangi Plan Change, design simulations for climate change scenarios gave what were considered excessive flows in the Utuhina Stream<sup>4</sup>. The NLR was subsequently modified to increase losses in the upper catchment (West, 2021).

According to flood frequency analysis of the Utuhina @ Depot St flow record, the accepted 1% AEP flow there is 55 m<sup>3</sup>/s (Blackwood, 2020). The hydraulic model can reproduce that flow (Figure 6-1) by running outputs from the design NLR model with the following assumptions:

- 1% AEP storm, moving at a bearing of 070° and with a travel speed of 0.55 m/s, centred on the upper Utuhina catchment (at the time of maximum intensity)
- 1% AEP storm, moving at a bearing of 070° and with a travel speed of 0.55 m/s, centred on the urban catchment

The same direction and speed, and the same two storm centres, have then been used for the other AEP and climate change scenarios.

<sup>&</sup>lt;sup>4</sup> Email from Philip Wallace to Peter West, 10 August 2020, and email reply from Peter West to Philip Wallace and Kathy Thiel-Lardon, 11 August 2020



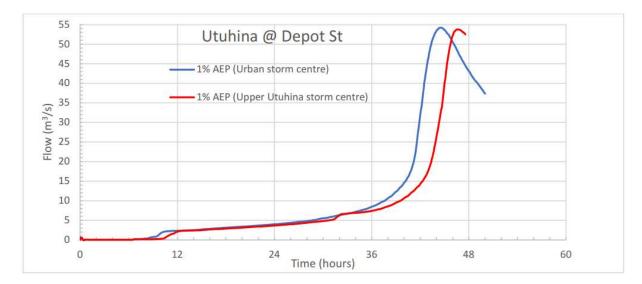



Figure 6-1 Predicted 1% AEP hydrographs for Depot Street recorder site in Utuhina Stream: urban and upper Utuhina storm centres

#### 6.1.2 Lake levels

As lake levels respond only very slowly to rainfall events, constant lake levels are assumed for design scenarios. Furthermore, only minor changes in design lake levels are expected with climate change since the lake levels are controlled artificially by stoplogs at the outlet (to the Ohau Channel on the north-eastern side of the lake). Table 6-1 gives the assumed combinations of design storms and lake levels.

| Climate         | Design storm | Lake level      |
|-----------------|--------------|-----------------|
| Current climate | 2% AEP       | 5% AEP = 280.28 |
| Current climate | 1% AEP       | 5% AEP = 280.28 |
| Current climate | 0.2% AEP     | 1% AEP = 280.34 |
| 2130 climate    | 2% AEP       | 5% AEP = 280.38 |
| 2130 climate    | 1% AEP       | 5% AEP = 280.38 |
| 2130 climate    | 0.2% AEP     | 1% AEP = 280.44 |

#### Table 6-1 Design storm and lake level combinations

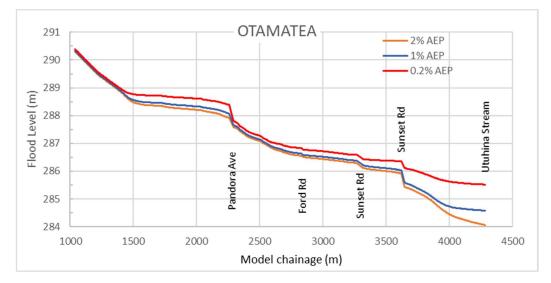
#### 6.1.3 Bridge debris blockage

For all scenarios, the Old Taupo Road bridge has an assumed pier ratio of 0.355 (0.3 above the "no-debris" situation and a soffit 0.5 m lower than the nominal soffit, to allow for likely debris blockage on what is an inefficient waterway (see section 3.2.3).



For the specific additional debris blockage scenario, the soffits of the Old Taupo Road culvert in the Mangakakahi Stream and of the Lake Road bridge over the Utuhina Stream have been lowered by 0.5 m. The pier ratio of the Lake Road bridge is increased by 0.1 to 0.1335<sup>5</sup>.

<sup>&</sup>lt;sup>5</sup> A subsequent check of the final "no-debris" model files showed that the piers option was inadvertently unticked for Lake Road, but the effect is expected to be insignificant as the no-debris pier ratio is small at only 3%.




### 6.2 Results

#### 6.2.1 Stream levels

Peak stream water levels are given in Figure 6-2 to Figure 6-9. Figure 6-9 also shows design water levels (with 700 mm freeboard), existing stopbank and floodwall levels and indicative top of bank levels for the lower Utuhina Stream. Levels are also tabulated in Appendix F.

Note that the effect of bridge debris in the 1% AEP scenario increases levels by around 150 mm immediately upstream of the affected bridges (Mangakakahi at Old Taupo Road and Utuhina at Lake Road), but slightly reduces levels downstream of Lake Road (Figure 6-6 and Figure 6-9).





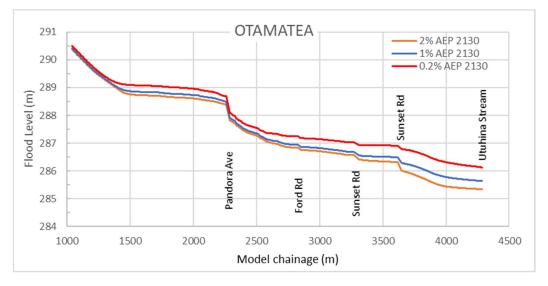



Figure 6-3 Peak flood levels (2130 climate design scenarios), Otamatea Stream



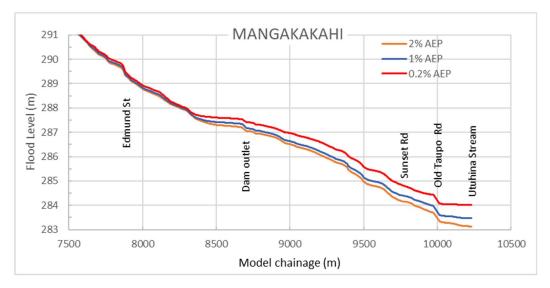



Figure 6-4 Peak flood levels (current climate design scenarios), Mangakakahi Stream

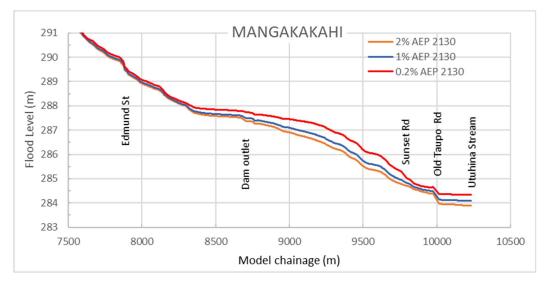



Figure 6-5 Peak flood levels (2130 climate design scenarios), Mangakakahi Stream



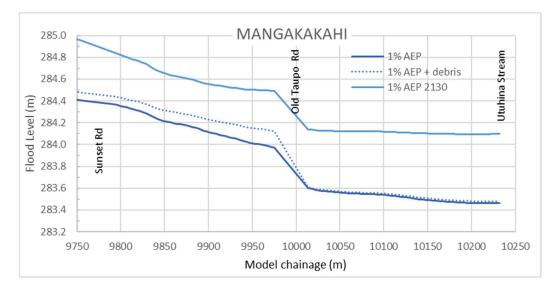



Figure 6-6 Peak flood levels (1% AEP design scenarios), lower Mangakakahi Stream

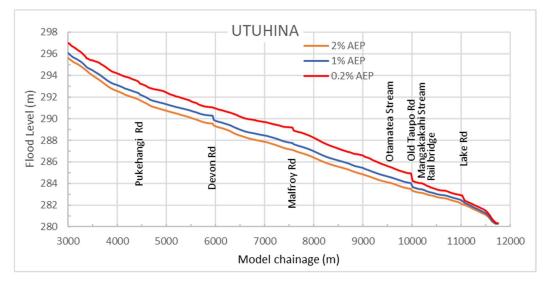



Figure 6-7 Peak flood levels (2130 climate design scenarios), Utuhina Stream



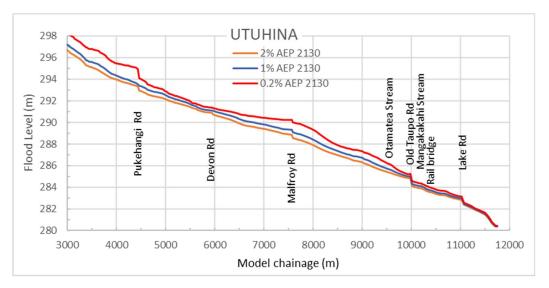



Figure 6-8 Peak flood levels (current climate design scenarios), Utuhina Stream

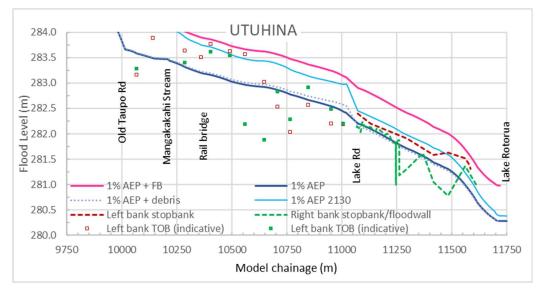



Figure 6-9 Peak flood levels (1% AEP design scenarios), lower Utuhina Stream

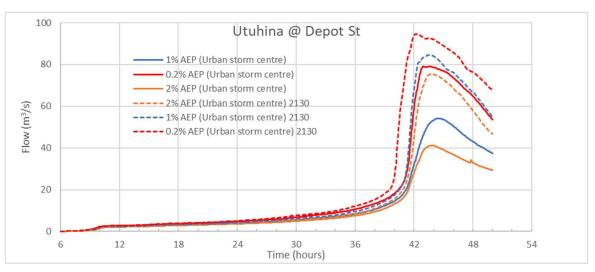
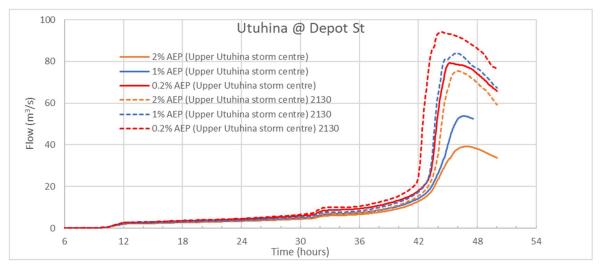
#### 6.2.2 Stream flows

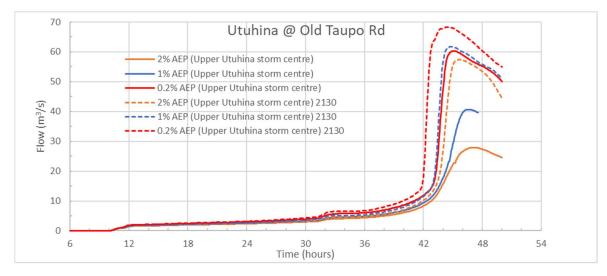
Flow hydrographs from selected scenarios and for selected sites are shown in Figure 6-10 to Figure 6-16.

Figure 6-10 and Figure 6-11 show flows at Depot St for the urban storm centre and the upper Utuhina storm centre respectively; the former peak earlier than the latter, while actual peaks for each of the two storm centres are generally similar.

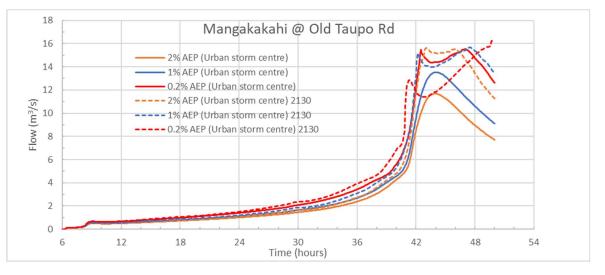
Figure 6-12 and Figure 6-13 show in-stream flow hydrographs at Old Taupo Road. For the Utuhina Stream, the upper Utuhina storm centre generally gives slightly higher flows than the urban storm centre, so results for the former are given in Figure 6-12. In the case of the Mangakakahi Stream the urban storm centre flows gives slightly higher flows and so results from that are shown in Figure 6-13.





Figure 6-13 also shows a twin peak for the larger storm scenarios, which can be explained by the effect of the detention dam 1.3 km upstream (Figure 6-14).







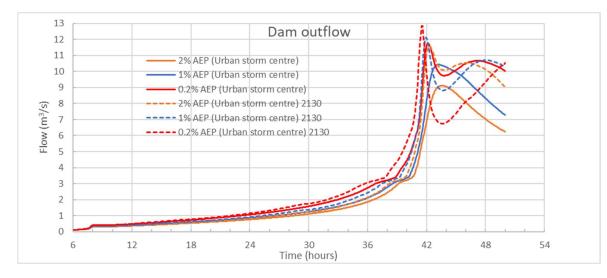
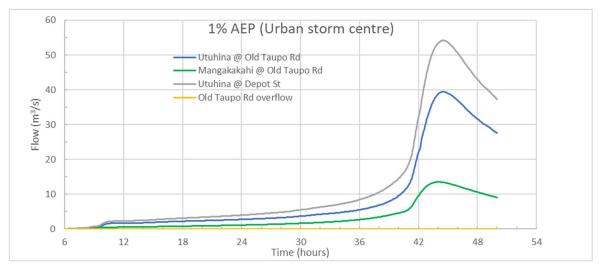
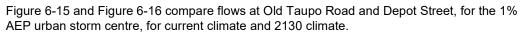


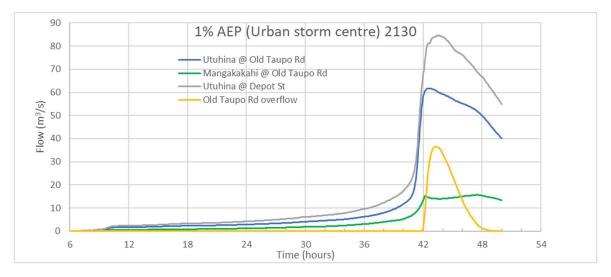










Figure 6-14 Flow hydrographs for Mangakakahi Stream, detention dam outlet (urban storm centre)













#### 6.2.3 Old Taupo Road overflow

In larger storms, the model predicts that Old Taupo Road will be overtopped. Figure 6-17 shows the overtopping flows. (The urban storm centre scenarios give slightly higher overflows than the upper Utuhina storm centre scenarios.)



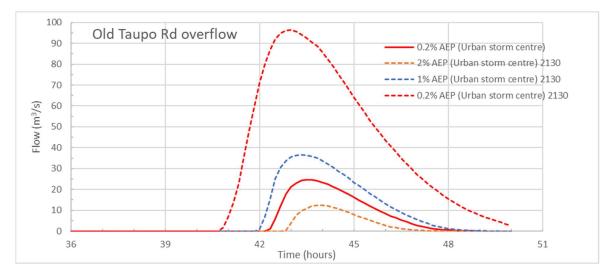



Figure 6-17 Flow overtopping Old Taupo Rd, urban storm centre

#### 6.2.4 Flood maps

Figure 6-18 and Figure 6-19 show flood extents (for non-zero depths) for current climate and 2130 climate design scenarios, respectively. Each design scenario shown is a maximum of maximum of the urban- and upper Utuhina-centred storms for the particular return period. The maps are drawn such that the 2% AEP flood overlays the 1% AEP flood, which in turn overlays the 0.2% AEP.

More detailed maps showing flood depths are shown in Figure 6-20 to Figure 6-25. Again, each scenario shown represents the maximum of the urban- and upper Utuhina-centred storms

The floodmaps have been supplied to BOPRC in raster format. Raster values have been interpolated from the FM elements. The raster resolution is 2 m x 2 m resolution, very close to the original mesh and model output resolution of just over  $5 \text{ m}^2$  (triangular elements), so any differences between the raster and actual model outputs will be insignificant.

Freeboard has not been applied to the levels and depths shown in the floodmaps. However, a minimum of 300 mm freeboard is recommended if flood level advice is to be supplied to external parties. Any such advice should also be qualified with a note that the floodmaps show flooding from the streams but do not explicitly show flooding from direct localised rainfall or from pipe surcharges.



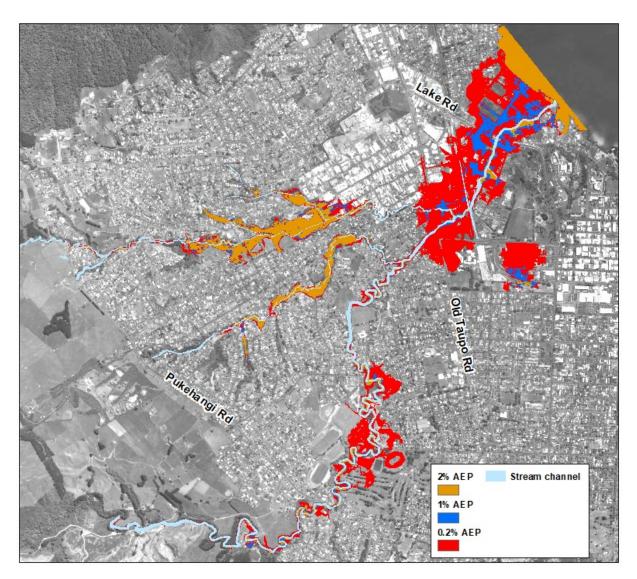



Figure 6-18 Flood extent, current climate design scenarios



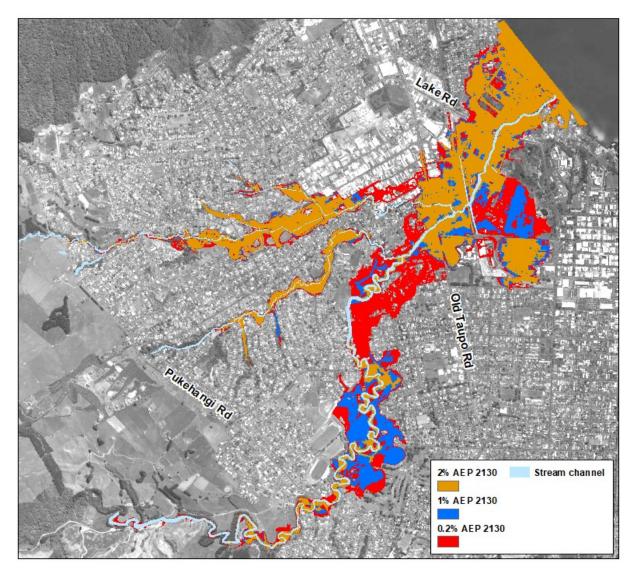



Figure 6-19 Flood extent, 2130 climate design scenarios



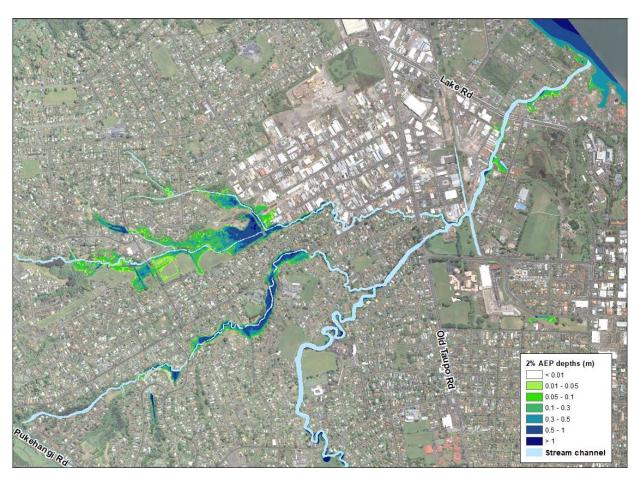



Figure 6-20 Flood map, 2% AEP current climate



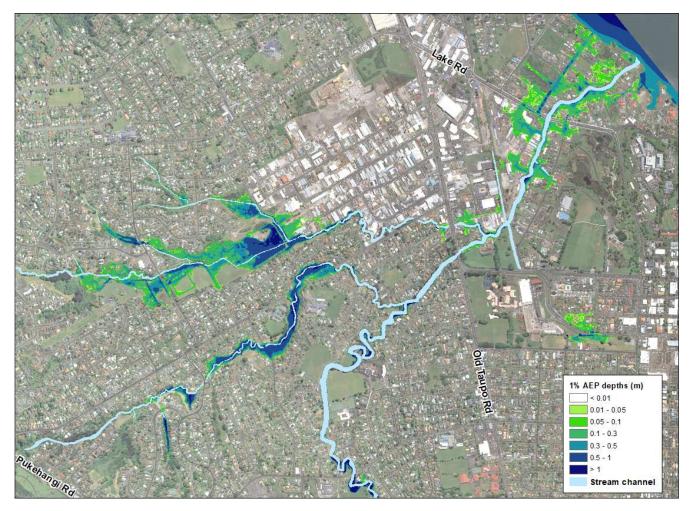



Figure 6-21 Flood map, 1% AEP current climate



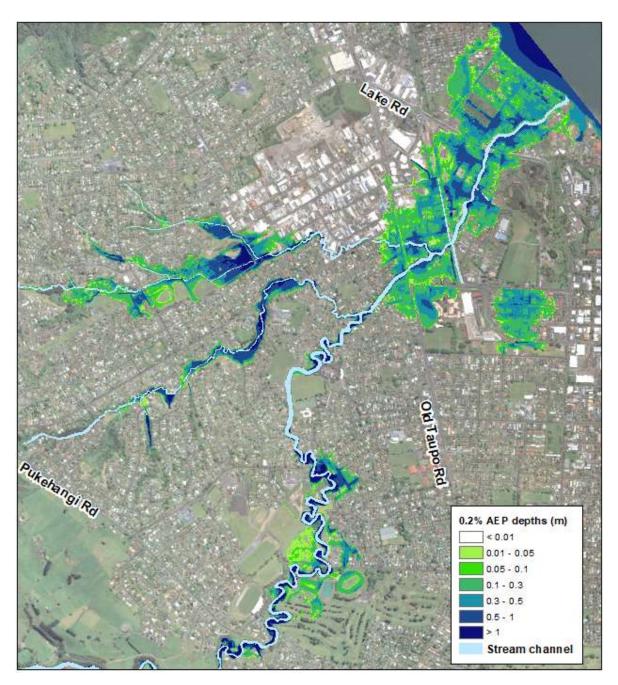



Figure 6-22 Flood map, 0.2% AEP current climate



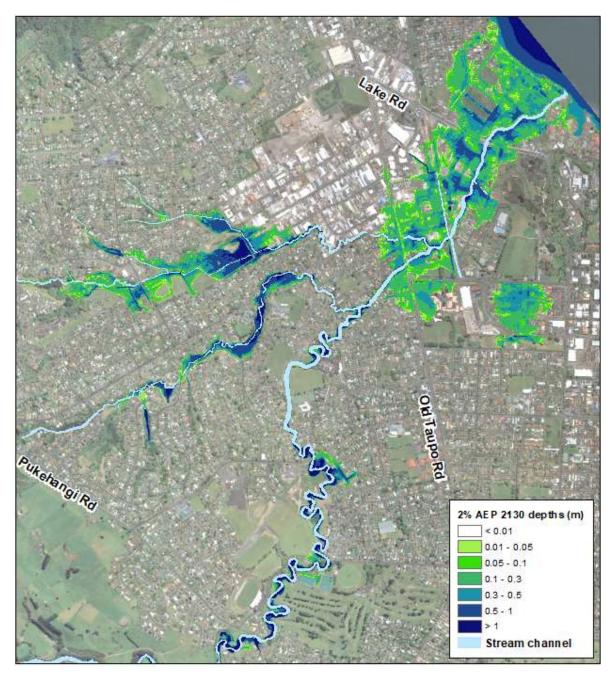



Figure 6-23 Flood map, 2% AEP 2130 climate



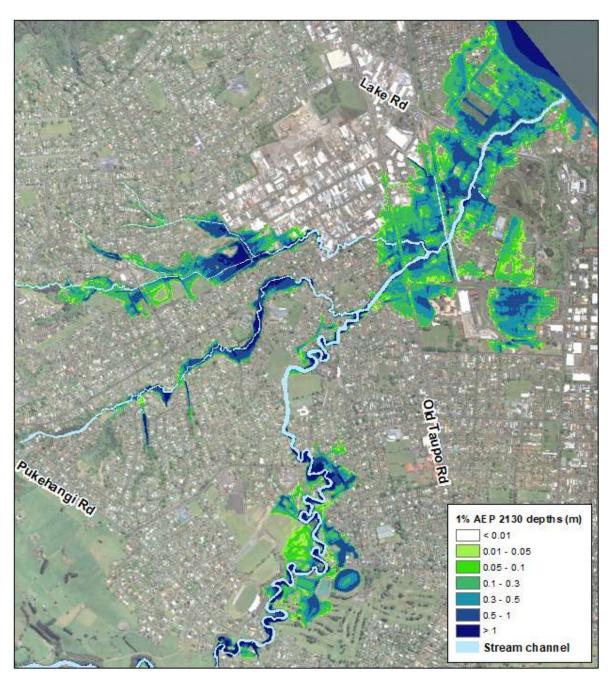



Figure 6-24 Flood map, 1% AEP 2130 climate



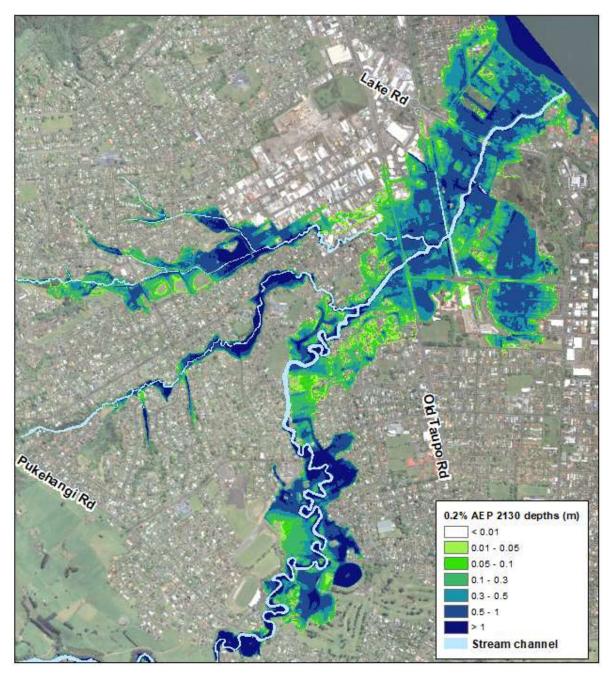



Figure 6-25 Flood map, 0.2% AEP 2130 climate



## 7 Conclusions and recommendations

A coupled 1-D and 2-D hydraulic model of the Utuhina Stream and floodplain has been built, calibrated and used to predict flood levels and extents for design storms. The model covers the urban area subject to possible flooding from the Utuhina Stream and its tributaries (Otamatea and Mangakakahi Streams) plus stream reaches upstream of Pukehangi Road. As the project scope did not allow for the urban stormwater pipe network to be modelled, overland flow from direct rainfall to the streams has not been explicitly modelled, nor has pipe surcharging been considered.

By adjusting hydrological model parameters and Manning's n values, ultimately a satisfactory calibration has been achieved, even if there are variations in how well the model reproduces individual calibration events.

However, extrapolating the calibration NLR hydrological model led to excessive flows in larger design scenarios, and the NLR model was subsequently adjusted to reduce runoff in the upper catchment. A rerun of the hydraulic model for the March 2017 flood event with the outputs of the revised NLR model gave peak stream levels 200 mm lower than observed debris levels from that event, on average. Nonetheless, it was agreed with BOPRC that the revised NLR model would stand for design scenarios.

In tandem with the NLR model, the hydraulic model is considered fit for the purpose of predicting flood levels and depths for the design scenarios assessed in this study (2% to 0.2% AEP), with the proviso that freeboard be increased to 700 mm when specifying design levels in the stream channels.

Nonetheless, the NLR hydrological model, and ultimately the hydraulic model, would benefit from additional flow and water level recorders upstream of the current recorders. While the existing sites provide useful water level records, flows are affected by backwater from the urban side drains (for the Utuhina @ Depot St site) and the Utuhina Stream (for the Mangakakahi @ Depot St). Having extra recorders further upstream would also reduce the uncertainty of the longitudinal flow profiles and subcatchment inputs along the lengths of the stream.

It is also recommended that flood debris levels be continued to be collected along the Utuhina Stream following flood events and that such levels also be collected along the Mangakakahi and Otamatea Streams. Little or no calibration information was available for these latter two streams in the current modelling exercise.

The adopted design standard for the lower Utuhina Stream downstream of Old Taupo Road calls for protection from a 1% AEP event, with 500 mm freeboard. Model results show that this standard is not being reached; the floodwaters spill in a 2% AEP event on the right bank downstream of Lake Road, through a gap in the floodwall. In a 1% AEP event, floodwaters spill from both banks downstream of the old railway in particular and also overtop Lake Road. In both events, there is also some inundation predicted for a limited number of industrial and residential properties further upstream alongside the three main streams.

In a 0.2% AEP event, flooding is more widespread, with around 25 m<sup>3</sup>/s overtopping Old Taupo Road, and flooding of residential properties between Malfroy Road and Devon Street.

With climate change to 2130 under RCP 8.5 (3.68°C warming), flood depths and extents for the 2% AEP event approach those of the current climate 0.2% AEP event. The 2130 1% AEP and 2130 0.2% AEP events are successively bigger and results from the latter show extensive areas under water.



## 8 References

- /1/ Barnett and McMurray (2009); Rotorua District Council Western Heights Stormwater Model Report. January 2009
- /2/ Bay of Plenty Regional Council (2018); Rivers and Drainage Asset Management Plan 2018-2068
- /3/ Beca Ltd. (2018); Utuhina River Catchment Field Surveys for Stormwater Hydraulic Modelling.
- /4/ Blackwood, P. (2020); In the matter of The Resource Management Act 1991(RMA) and in the matter of Proposed Plan Change 2: Pukehangi Heights to the Rotorua District Plan under Part 5, Sub-Part 5 – Streamlined Planning Process and Schedule 1 Part 5 of the RMA. Summary of Evidence of Peter Blackwood on Behalf of Bay of Plenty Regional Council – Utuhina Flood Frequency & Rainfall Temporal Variation. 21 September 2020. https://letstalk.rotorualakescouncil.nz/42068/widgets/274340/documents/181969/download
- /5/ DHI (2017); Utuhina: Phase 1: Numerical Modelling Scoping. Prepared for Bay of Plenty Regional Council, October 2017.
- *(6)* Environment Bay of Plenty (2007); *Environmental Data Summary*. Environmental Publication 2007/06.
- 17/ New Zealand Aerial Mapping (2011); Data Supply Metadata LiDAR 1k supply 2
- /8/ Rotorua District Council (2010); Stormwater Urban Catchment 15: Linton Park Detention Basin - Upgrading Report. Rotorua District Council Works Division, June 2010
- /9/ Wallace, P. (2006); Utuhina MIKE 11 Model. 31 August 2006
- /10/ Wallace, P. (2011); Utuhina Stream Model Update. Report prepared for Bay of Plenty Regional Council. River Edge Consulting Limited, July 2011
- /11/ Wallace, P. (2014); Utuhina Stream Flood Modelling and Mapping. Report prepared for Bay of Plenty Regional Council. River Edge Consulting Limited, February 2014
- /12/ Wallace, P. (2020); In the matter of The Resource Management Act 1991(RMA) and in the matter of Proposed Plan Change 2: Pukehangi Heights to the Rotorua District Plan under Part 5, Sub-Part 5 – Streamlined Planning Process and Schedule 1 Part 5 of the RMA. Summary of Evidence of Philip Wallace on Behalf of Bay of Plenty Regional Council – Hydraulic Modelling and Flood Impacts. 21 September 2020. https://letstalk.rotorualakescouncil.nz/42068/widgets/274340/documents/181971/download
- /13/ West, P. (2020); In the matter of The Resource Management Act 1991(RMA) and in the matter of Proposed Plan Change 2: Pukehangi Heights to the Rotorua District Plan under Part 5, Sub-Part 5 – Streamlined Planning Process and Schedule 1 Part 5 of the RMA. Summary Statement of Evidence of Peter Morley West on Behalf of Bay of Plenty Regional Council –Hydrological Basis for Analysis. 21 September 2020. https://letstalk.rotorualakescouncil.nz/42068/widgets/274340/documents/182481/download
- /14/ West, P. (2021); BOPRC Flood Forecasting Systems: Utuhina Hydrological Model Establishment. Blue Duck Design Ltd., 15 March 2021.
- /15/ WSP Opus (2018); Catchment 14: Stormwater Model Build and System Performance Report. Report to Rotorua Lakes Council, May 2018.



# APPENDICES

The expert in **WATER ENVIRONMENTS** 





# APPENDIX A - Project Brief

The expert in **WATER ENVIRONMENTS** 





## A Project Brief



### **Project Briefing Sheet**

This Project Brief is issued pursuant to the agreed terms and conditions of the Contract for Engineering Services Panel Suppliers contract number 2016 0161-12 between Bay of Plenty Regional Council and DHI Water and Environment Limited for the period 1/09/2018 – 30/06/19.

| 1/09/2018 - 30/06/19.               |                                                                                                                                                                                                                                                                                 |                           |              |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|
| Project Name:                       | Utuhina Stream Capacity Review and Flood Risk Assessment                                                                                                                                                                                                                        |                           |              |
| Engineering Manager:                | Mark Townsend                                                                                                                                                                                                                                                                   |                           |              |
| Project Manager:                    | Kathy Thiel-Lardon                                                                                                                                                                                                                                                              |                           |              |
| Engineering Job Number:             | FRP                                                                                                                                                                                                                                                                             | Contract Number:          | 2016 0161-12 |
| Job Tracker Number:                 | The                                                                                                                                                                                                                                                                             | Purchase Order<br>Number: |              |
| Client Name/Contact<br>Person:      | Bay of Plenty Regional Council   Contact: Kathy Thiel-Lardon     M: 027 503 8242   W: 0800 884 881 x 8144                                                                                                                                                                       |                           |              |
| Consultant Name/ Contact<br>Person: | DHI Water and Environment Limited         Contact: Philip Wallace           M:         021 238 7515         W:         04 974 5543                                                                                                                                              |                           |              |
| Purpose/Objective:                  | The Utuhina Stream has a long history of flooding and erosion.                                                                                                                                                                                                                  |                           |              |
|                                     | Recent discussions with Rotorua Lakes Council identified the need of<br>an updated model to assess the impacts of flood flows, set boundary<br>conditions for the stormwater systems and optimise any potential<br>mitigation options used to mitigate flood and erosive risks. |                           |              |
|                                     | This project seeks to determine the flood and erosion risk to properties adjacent the Utuhina Stream and then develop appropriate mitigation options.                                                                                                                           |                           |              |
| Scope of Work:                      | The study area includes the entire Utuhina Stream Catchment.<br>Hydrological input generation will be required for the entire catchment<br>area. Hydraulic modelling will be required for the lower and middle<br>catchment and need to extend into the floodplain areas.       |                           |              |
|                                     | This project is to be split into three phases,                                                                                                                                                                                                                                  |                           |              |
|                                     | Phase 1: Gap analysis and preparation of the project scope.                                                                                                                                                                                                                     |                           |              |
|                                     | Phase 2: Data collection and model build                                                                                                                                                                                                                                        |                           |              |
|                                     | Phase 3: Calibration, design simulations, mapping and reporting.                                                                                                                                                                                                                |                           |              |
|                                     | Phase 4 (Provisional): Flood Risk Assessment and Mitigation Options.<br>The attached table shows the tasks to be undertaken. These need to be                                                                                                                                   |                           |              |
|                                     | further refined by the Consultant.                                                                                                                                                                                                                                              |                           |              |
| Methodology:                        | The methodology shall be refined by the Consultant.                                                                                                                                                                                                                             |                           |              |
| Detailed Methodology<br>Attached    | None                                                                                                                                                                                                                                                                            |                           |              |
| Input Requirements:                 | The project will involve a number of stakeholders (e.g. BOPRC<br>Engineering, Data Services, Land Management and RLC) with different<br>levels of engagement required.                                                                                                          |                           |              |



|                                   | <ul> <li>The individual project tasks will require different amounts of inputs from each party and iterative processes between tasks and staff.</li> <li>There is a range of information that can be referenced for this study including: <ul> <li>Previous modelling and capacity assessment reports.</li> <li>Historical flood event assessments.</li> </ul> </li> </ul>                                                  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Detailed Inputs Attached          | None                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Deliverables:                     | <ul> <li>The deliverables for the project includes:</li> <li>A project scope.</li> <li>A survey database.</li> <li>A calibration database.</li> <li>A calibrated hydrological model of the entire catchment.</li> <li>A calibrated hydraulic model for the middle and lower catchment areas.</li> <li>A boundary condition analysis.</li> <li>A Capacity Review Report.</li> <li>A Flood Risk Assessment Report.</li> </ul> |  |
| Detailed Deliverables<br>Attached | None                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Resources:                        | This project will require various people to interact and iterate findings between tasks.                                                                                                                                                                                                                                                                                                                                    |  |
| Detailed Resources<br>Attached    | None                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

Project Brief





# APPENDIX B-Model Files MIKE FLOOD Files





#### B MIKE FLOOD Files

Input and output files for selected final model simulations can be tracked via the *.couple* files noted in Table B-1.

Unless otherwise noted, the models were run with MIKE 2017 (SP2) on DHI computers.

All simulations used the "low order" solution technique within MIKE 21 FM. Ideally, the "higher order" option would have been used, but this would have led to long simulation times. From past experience with other projects, the high order results are typically not significantly different from low order results.

Note also that the design simulations and the March 2017 calibration simulation with the design NLR model have adjustments to the exponential smoothing factor<sup>6</sup> for lateral links in the Utuhina, Mangakakahi and Otamatea to remove instabilities along those links in large flows (the 0.2 % AEP event and the climate change scenarios). The mid-reaches of the Utuhina in particular showed some instabilities without the adjustments. Tests with the March 2017 event showed that the adjustments had negligible effect for that event, and it was not considered necessary to rerun the other calibration events.

| Scenario                                               | .couple file                                    |
|--------------------------------------------------------|-------------------------------------------------|
| 23 January 2011 flood                                  | Utuhina_23Jan11.couple                          |
| 29 January 2011 flood                                  | Utuhina_29Jan11                                 |
| August 2014 flood                                      | Utuhina_Aug14.couple                            |
| March 2017 flood                                       | Utuhina_Mar17.couple                            |
| March 2017 flood (design hydrology NLR model)          | Utuhina_Mar17-ESF.couple                        |
| April 2018 flood                                       | Apr18.couple                                    |
| 2% AEP, current climate, urban-centred storm           | UtuhinaQ50 Storm070_0pt55_UrbanCentre.couple    |
| 2% AEP, current climate, upper Utuhina-centred storm   | UtuhinaQ50 Storm070_0pt55_UtuhinaCentre.couple  |
| 1% AEP, current climate, urban-centred storm           | UtuhinaQ100 Storm070_0pt55_Urban.couple         |
| 1% AEP, current climate, upper Utuhina-centred storm   | UtuhinaQ100 Storm070_0pt55_UtuhinaCentre.couple |
| 0.2% AEP, current climate, urban-centred storm         | UtuhinaQ500 Storm070_0pt55_UrbanCentre.couple   |
| 0.2% AEP, current climate, upper Utuhina-centred storm | UtuhinaQ500 Storm070_0pt55_UtuhinaCentre.couple |
| 1% AEP, current climate, urban-centred storm, debris   | UtuhinaQ100 Storm070_0pt55_Urban_D1.couple      |

#### Table B-1 MIKE FLOOD .couple files

<sup>&</sup>lt;sup>6</sup> Refer to http://doc.mikepoweredbydhi.help/webhelp/2020/mikeflood\_help/#%3Cid=1206



| 2% AEP, 2130 climate, urban-centred storm           | Utuhina_Q50_2130_Storm070_0pt55(UrbanCentre).couple    |
|-----------------------------------------------------|--------------------------------------------------------|
| 2% AEP, 2130 climate, upper Utuhina-centred storm   | Utuhina_Q50_2130_Storm070_0pt55(UtuhinaCentre).couple  |
| 1% AEP, 2130 climate, urban-centred storm           | Utuhina_Q100_2130_Storm070_0pt55(UrbanCentre).couple   |
| 1% AEP, 2130 climate, upper Utuhina-centred storm   | Utuhina_Q100_2130_Storm070_0pt55(UtuhinaCentre).couple |
| 0.2% AEP, 2130 climate, urban-centred storm         | Utuhina_Q500_2130_Storm070_0pt55(UrbanCentre).couple   |
| 0.2% AEP, 2130 climate, upper Utuhina-centred storm | Utuhina_Q500_2130_Storm070_0pt55(UtuhinaCentre).couple |

In addition, the 29 January 2011 event was also simulated with an alternative set-up, where only the reach downstream of the Utuhina Stream Depot Street recorder was modelled (refer 5.2). Only a 1-D model was used for that simulation, as defined in the set-up of *Utuhina\_29Jan11(M11onlyLOWER).sim11* 





## APPENDIX C-Hydrology

Email correspondence

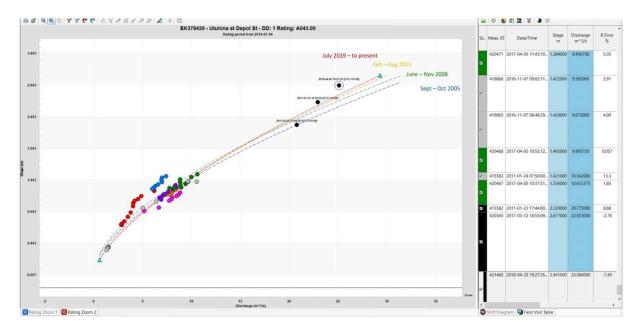




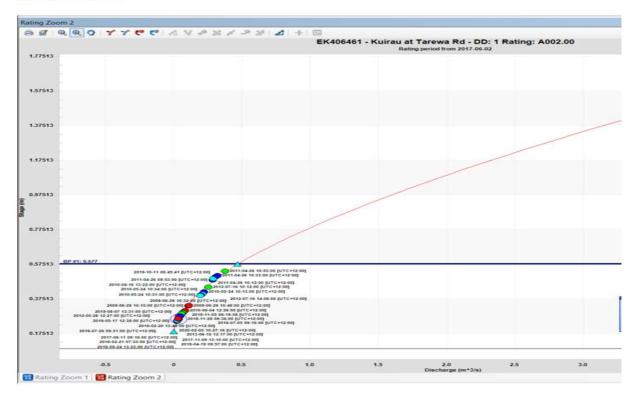
### C Hydrology

Email correspondence regarding the hydrological assumptions is provided below.

#### C.1 Utuhina and Kuirau recorder ratings


| From:        | Craig Putt <craig.putt@boprc.govt.nz></craig.putt@boprc.govt.nz>                |
|--------------|---------------------------------------------------------------------------------|
| Sent:        | Friday, April 24, 2020 3:07 PM                                                  |
| To:          | Philip Wallace                                                                  |
| Subject:     | RE: Issue [EDS-611735] has been assigned to you by Angela Perks                 |
| Attachments: | RE: Gap Analysis & Scoping Exercise For Utuhina Stream Flood Hazard; Kuirau at  |
|              | Tarewa Road 20090423 (3).jpg; Kuirau at Tarewa Road 20170601 - Radar Installed  |
|              | (5).JPG; Utuhina at Depot Street 20170405 1045 (9).JPG; Utuhina at Depot Street |
|              | 20170312 2000 (4).jpg; Utuhina at Depot Street 20190802 - ADCP Stationary       |
|              | Gauging Workshop (1) 1.52m3-sec.jpg                                             |

Hi Phil,


Good to hear from you. Hope you guys are keeping well in your bubble!

Yes, we still have some issues with these two sites. The ratings drawn for Utuhina at Depot St in 2011 and 2013 were done in TIDEDA and were largely based on 'best fit' and the limited data we had at the time. When we migrated to Aquarius software, we were then able to draw rating curves in both log-log and linear space, with the advantage of using a mathematical formula to validate each segment of a curve (and more data). The formula has some hydrological constraints which discourage users from creating unrealistic shapes and I used this as the basis to review the Utuhina ratings, after our highest recorded gauging on 29 April 2018 (25.08m3/s at 2.941m stage). However, there is still an ongoing issue with gauging scatter between events, which is not driven by hysteresis. The plot below is an update of the one that I sent you 26/06/2017 (attached), showing gaugings colour coded by storm events. Note that the 3 black gaugings which are the highest on record, are from different events. The light grey gaugings at the lower end of the curve are also from different events. As you can see, there is a lot of variability! My theory is that the top end of the rating has been retreating as the banks have (1) collapsed; (2) been stabilised with gabion baskets; and (3) become vegetated with 1m high weeds, over time (see plot below and photos attached). The erosion at the gauging cross section and water level recorder is a little worse than at the Engineers cross section, 30m upstream.





Kuirau at Tarewa Rd ratings were revised when we moved to Aquarius, because the original rating was not hydraulically correct. The top end is entirely theoretical, based on channel width and form. However, the formula does not allow for the fact that Kuirau Stream flow backs up when the Utuhina Stream rises. So, the rated flow is the likely maximum flow, above 0.577m of stage (which is the top of the weir – rated at 475L/sec). In reality, it's probably a lot less. I've attempted to gauge the site a couple of times when the weir was drowned out (at around 0.7m stage, from memory), but the velocities were too low to record anything useful. Photos attached, showing normal flow conditions at the weir, staff gauge and upstream culvert (coming from Kuirau Park). Stage-discharge rating shown below:





Hope that helps. Let me know if you have any further questions relating to these sites.

Regards,

#### Craig Putt Senior Environmental Data Officer Bay of Plenty Regional Council Toi Moana

P: 0800 884 880 DD: 0800 884 881 x7579 E: <u>Craig.Putt@boprc.govt.nz</u> M: 029 368 7579 W: <u>www.boprc.govt.nz</u> A: PO Box 364, Whakatāne 3158, New Zealand

Thriving together – mõ te taiao, mõ ngā tāngata From: JobTracker No-Reply <jobtracker@boprc.govt.nz> Sent: Thursday, 16 April 2020 19:51 To: Craig Putt <Craig.Putt@boprc.govt.nz> Subject: Issue [EDS-611735] has been assigned to you by Angela Perks

The following issue has been assigned to you:

| Title:       | 2011 floods, Utuhina Stream and Kuirau Stream |
|--------------|-----------------------------------------------|
| Area:        | Environmental Data Services                   |
| Created By:  | Administrator at 2020-04-16 03:40 PM          |
| Reporter:    | External Consultants                          |
| Category:    | External                                      |
| Priority:    | High                                          |
| Type:        | Data Query                                    |
| Due Date:    | 2020-04-24 11:00 AM                           |
| Decemintions |                                               |

#### Description:

The following issue has been added via the Mailbox Reader.

 Mailbox:
 JobsForEds@boprc.govt.nz

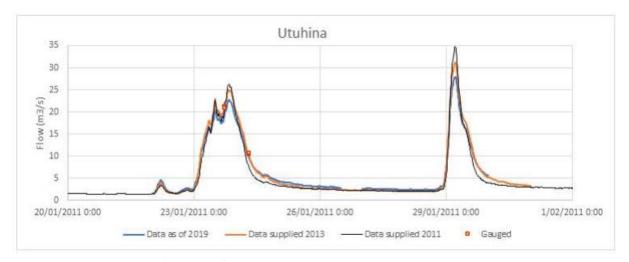
 From:
 phw@dhigroup.com

 To:
 jobsforeds@boprc.govt.nz

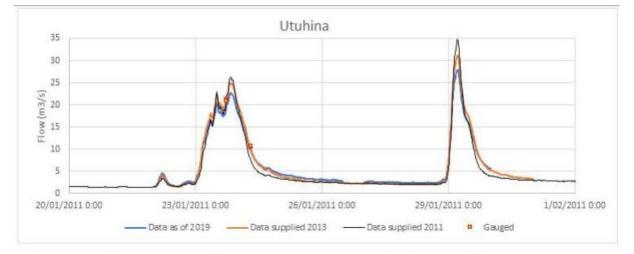
 Delivered On:
 2020-04-16

 03:35 PM

Hi,


I am interested in the ratings that have been applied to the Utuhina and Kuirau Streams.

I can understand that over time the ratings change as more gaugings are obtained, but I am wondering about the what seems to be retrospective changes to the flow estimates for particular floods.


In particular, I am remodelling the 2011 floods for the Utuhina Stream. I had previously modelled these in 2013.

Below is a plot of the Utuhina flows, for data supplied at three different times (current/2019 has been taken from the data portal <u>https://envdata.boprc.govt.nz/</u>. For 2011 and 2013 the data were supplied by BOPRC (from Craig Putt I seem to recall).





Looking more closely at the 1<sup>st</sup> flood ie 23<sup>rd</sup> Jan, when there were some gaugings, the gaugings seem to fit better to the flows as supplied as of 2013.



In the case of the Kuirau, the flow estimates seem to have gone up quite a lot to what was supplied in 2013.





However, from the gaugings I have been given (thanks Ange), the highest gauging was only 0.376 m3/s (in April 2011), so we can assume that the reliability at high flows is very low.

(Peter W, - Interestingly, your NLR model predicts a peak flow of 2.5m/s, pretty close to the 2013 rating of 2.7m3/s for that 2011 event)

I'd be interested in any comments that you may have. I am thinking that for my modelling, I will use the 2013 ratings for both the Utuhina @ Depot St and Kuirau @ Tarawa Rd flows. For the Utuhina, this is because the gaugings from the 23<sup>rd</sup> Jan 2011 event seem to match the 2013 rating best. Perhap the changes to the rating more recently reflect actual changes to the bed since 2011/2013.

(Although at xs about 30m u/s, the most recent xs in 2018 seems to have bigger flow area at peak levels of 2011 event than those of c2007-2013, which is perhaps doesn't support what I am arguing).

Thanks for any comments you may have

Regards

Phil

#### C.2 Hydrology inputs to hydraulic model

From: Peter West Sent: Thursday, 23 April 2020 6:20 p.m. To: plw@dhigroup.com Cc: Peter Blackwood; Peter West (Blue Duck); Kathy Thiel-Lardon Subject: Utuhina Hydrologic modelling; Calibration refinement; Hydraulic model input files

Hi Phil,

I've completed a refinement of the Utuhina hydrologic model calibration following your hydraulic simulations with our first attempt.

Your hydraulic model results have made it possible to gain a lot of understandings.

Although there is only one actually functioning flow gauge in the system, it is possible to see the characteristic response from each of the main contributing subcatchments in the gauge record now.

I've been able to re-define soil-response characteristics for the upper catchment, and the urban area.

However I've been unable to model the additional discharge photographed in the Otamatea catchment in the 2014 storm. I have to conclude that we are not observing the full rainfall intensities for that event.

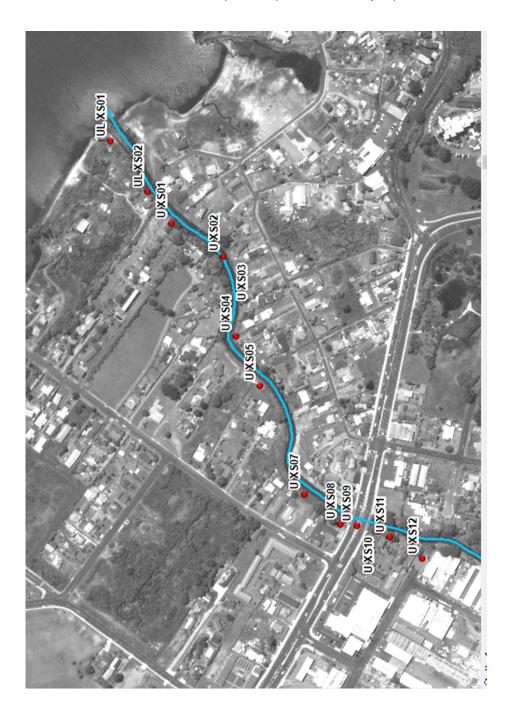
You will see that for several of the calibration flood peaks, I'm asking you to model flows higher than the rated flows at Utuhina at Depot street. This is because I've found the rating there to be impacted by the large inflowing urban drains immediately downstream to up to 8m3/s. Although difficult without several more iterations, I hope that this set of inputs will enable us to calibrate closely to the <u>levels</u> observed at the gauge.

Please find attached two sets of boundary conditions for the hydraulic model: Calibration inputs; and Design inputs. Let me know how it goes.

Thanks

Peter

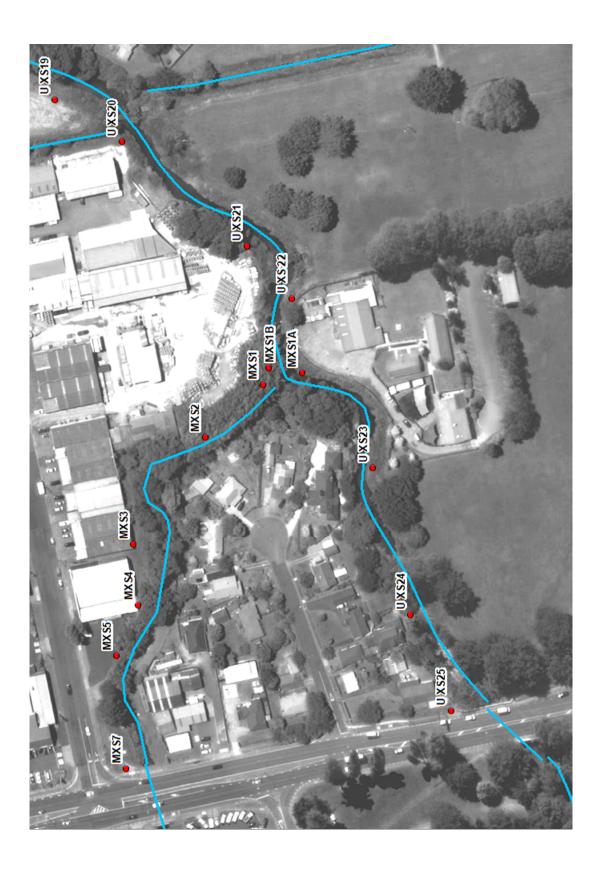



# APPENDIX D-Cross-section locations 2018 survey

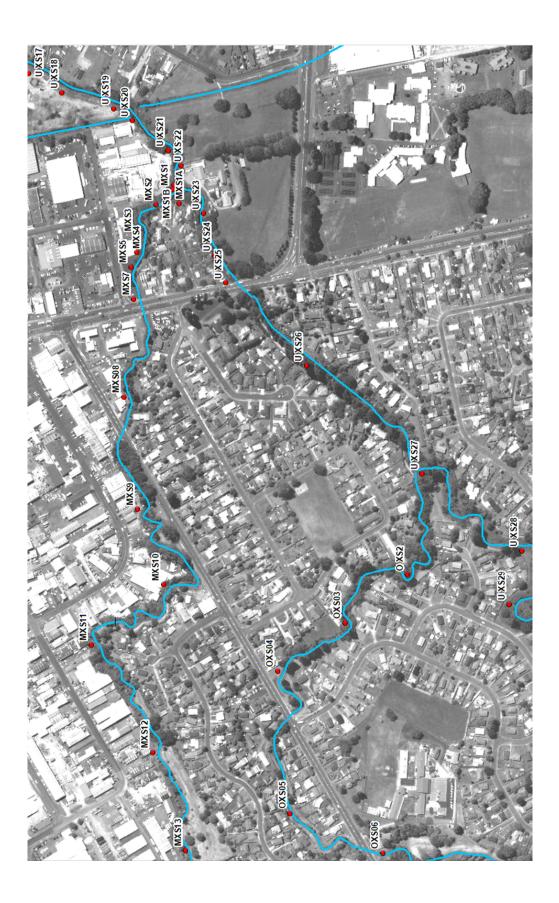




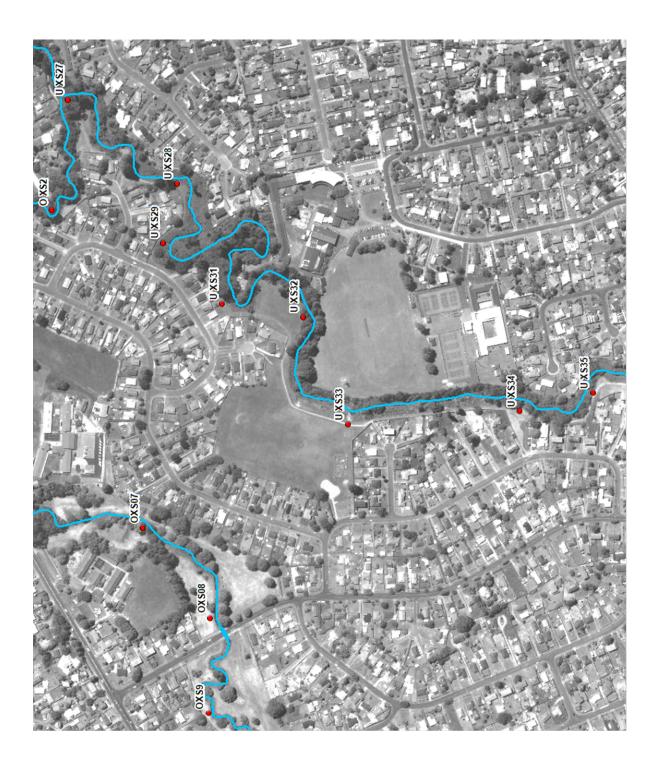
## D Cross-section Locations


The following diagrams show the location of 2018 cross-sections for the three main streams. The numbering of the sections generally proceeds in an upstream direction. Beca supplied the raw data in *.csv* format, which has also been converted to a point shape file *2018survey.shp*.

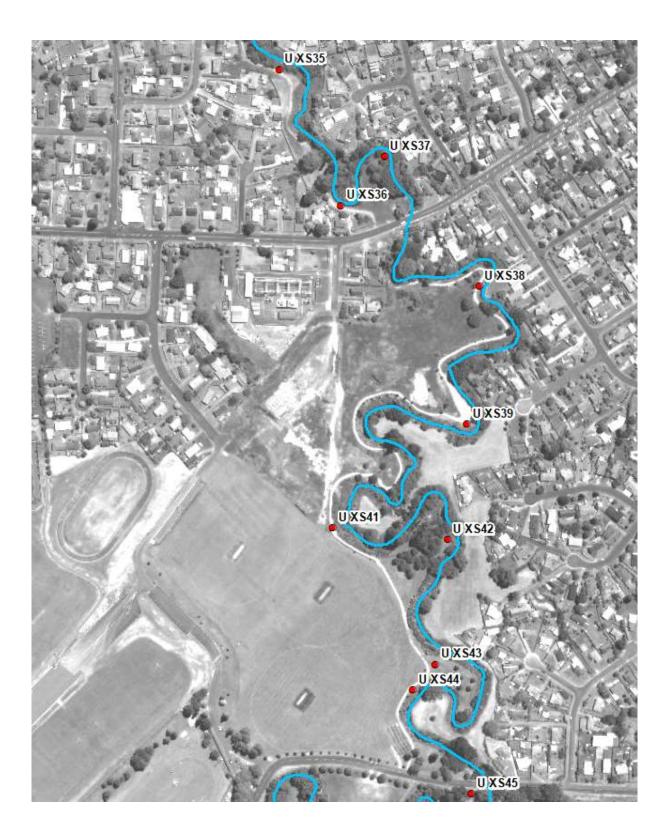




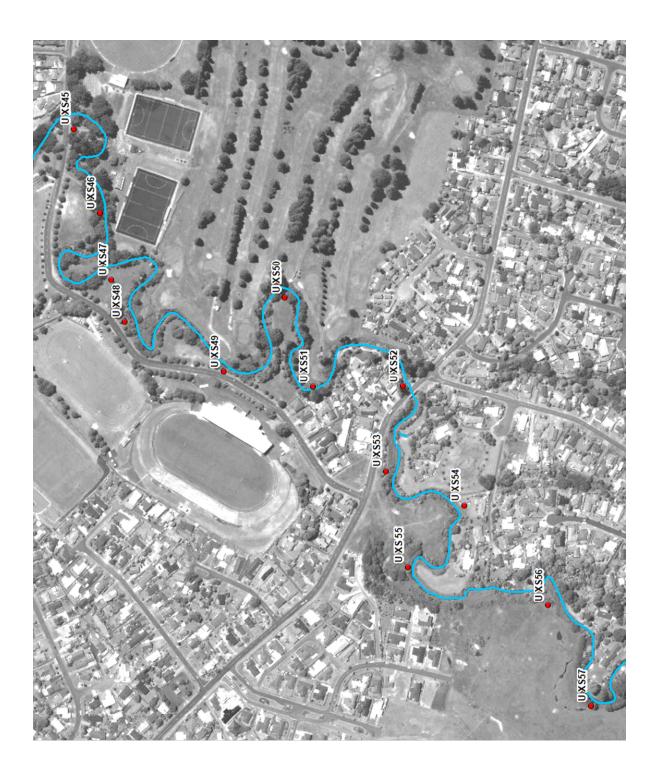






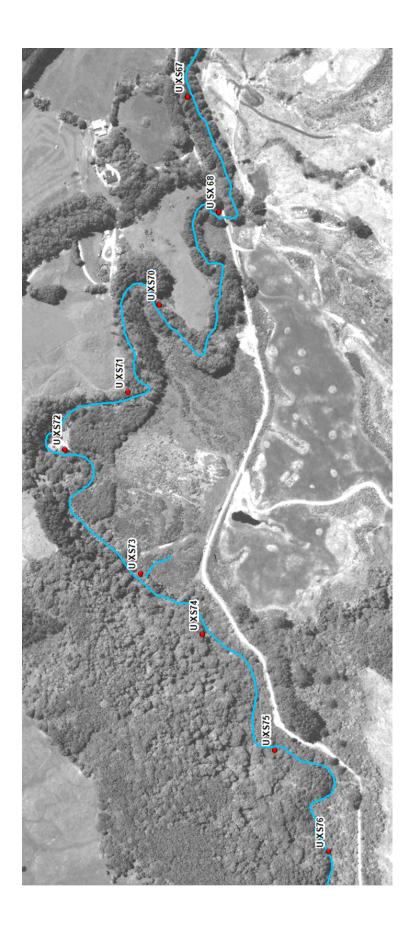





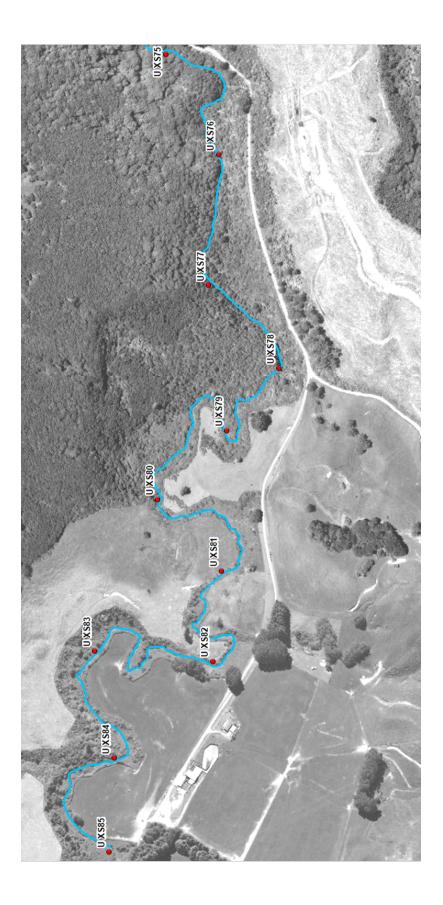




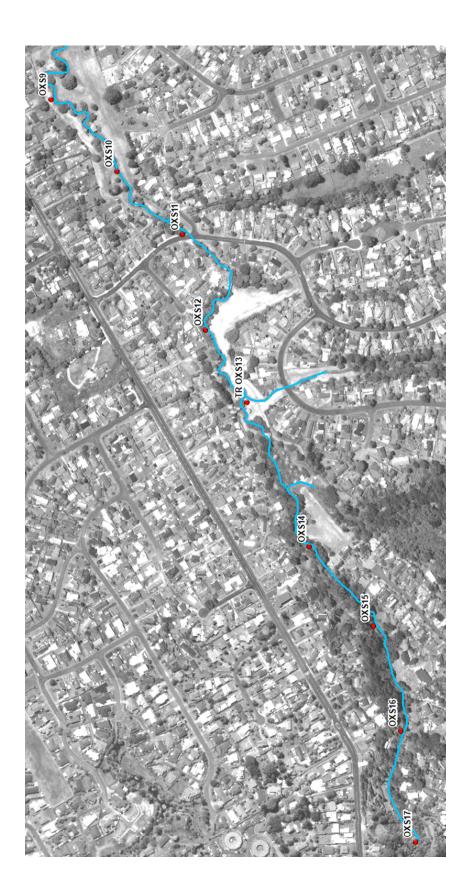




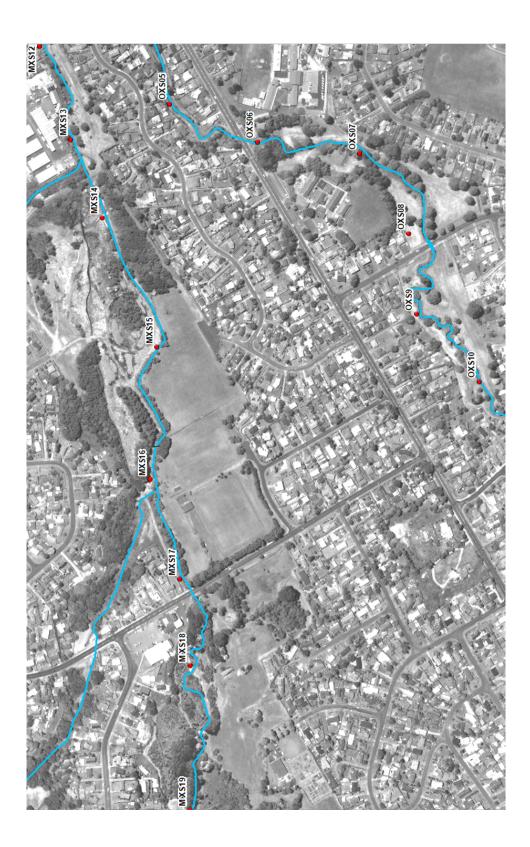


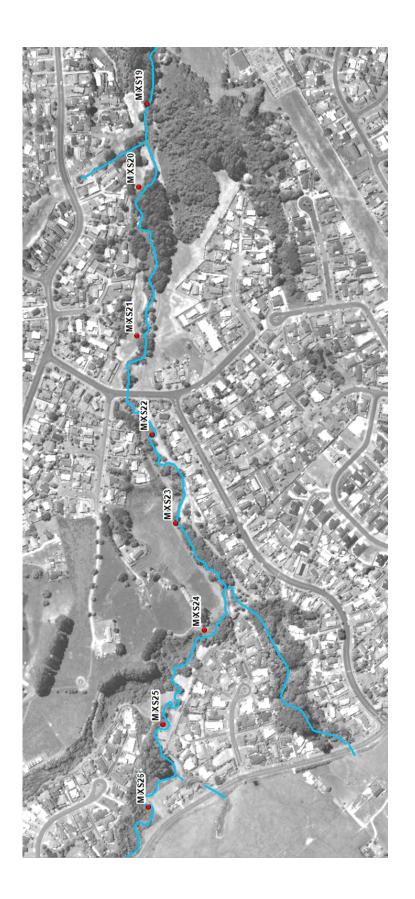


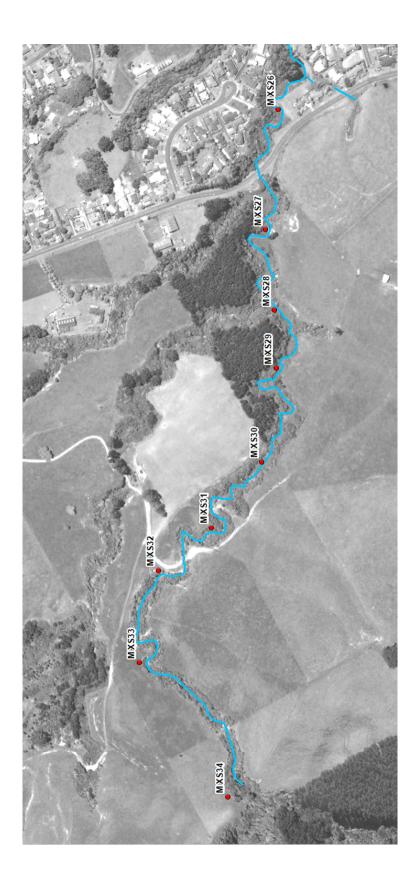



















# APPENDIX E-Calibration Results

Peak flood levels





## E Calibration Results

Model results are compared to recorded debris levels for the March 2017 flood event. "Debris MC" indicates the survey team had medium confidence in the debris level and "Debris HC" indicates high confidence.

|          |             |             |           |            |          | Mo       | del predic | tion     | Mo         | del predict | ion         |
|----------|-------------|-------------|-----------|------------|----------|----------|------------|----------|------------|-------------|-------------|
|          |             | Recorded    | d debris  |            |          | NLR c    | alibration | model    | revised NL | .R model (d | esign runs) |
| Branch   | Easting     | Northing    | Elevation | Feature_Co | Chainage | Model    | Error      | absolute | Model      | Error       | absolute    |
| OTAMATEA | 1882616.404 | 5773967.358 | 285.351   | Debris MC  | 3323     | 285.4881 | 0.137      | 0.1371   | 285.4857   | 0.135       | 0.1347      |
| OTAMATEA | 1882617.965 | Debris MC   | 3327      | 285.4844   | 0.193    | 0.1934   | 285.482    | 0.191    | 0.191      |             |             |
| OTAMATEA | 1882832.195 | 5774061.067 | 284.644   | Debris MC  | 3645     | 284.5959 | -0.048     | 0.0481   | 284.595    | -0.049      | 0.049       |
| OTAMATEA | 1882888.900 | 5774082.097 | 284.333   | Debris MC  | 3723     | 284.4988 | 0.166      | 0.1658   | 284.4982   | 0.165       | 0.1652      |
| OTAMATEA | 1882888.900 | 5774082.097 | 284.333   | Debris MC  | 3727     | 284.4918 | 0.159      | 0.1588   | 284.4913   | 0.158       | 0.1583      |
| OTAMATEA | 1882894.388 | 5774080.897 | 284.267   | Debris MC  | 3731     | 284.4845 | 0.218      | 0.2175   | 284.484    | 0.217       | 0.217       |
| AVERAGE  |             |             |           |            |          |          | 0.137      | 0.153    |            | 0.136       | 0.153       |

|         |             |             |           |            |          | Mo       | del predic | tion     | Mc         | del predic | tion       |
|---------|-------------|-------------|-----------|------------|----------|----------|------------|----------|------------|------------|------------|
|         |             | Recorded    | d debris  |            |          | NLR c    | alibration | model    | revised NL | R model (d | esign runs |
| Branch  | Easting     | Northing    | Elevation | Feature_Co | Chainage | Model    | Error      | absolute | Model      | Error      | absolute   |
| UTUHINA | 1881888.456 | 5771439.954 | 296.102   | Debris HC  | 2953     | 296.1781 | 0.0761     | 0.0761   | 296.0415   | -0.0605    | 0.060      |
| UTUHINA | 1881888.456 | 5771439.954 | 296.102   | Debris HC  | 2957     | 296.1653 | 0.0633     | 0.0633   | 296.0277   | -0.0743    | 0.0743     |
| UTUHINA | 1881888.456 | 5771439.954 | 296.102   | Debris HC  | 3016     | 295.9638 | -0.1382    | 0.1382   | 295.8195   | -0.2825    | 0.282      |
| UTUHINA | 1881918.613 | 5771433.546 | 296.087   | Debris HC  | 3059     | 295.7872 | -0.2998    | 0.2998   | 295.6536   | -0.4334    | 0.4334     |
| UTUHINA | 1882096.613 | 5771342.996 | 295.004   | Debris HC  | 3296     | 295.0887 | 0.0847     | 0.0847   | 294.9626   | -0.0414    | 0.0414     |
| UTUHINA | 1882096.613 | 5771342.996 | 295.004   | Debris HC  | 3300     | 295.0730 | 0.0690     | 0.0690   | 294.9473   | -0.0567    | 0.056      |
| UTUHINA | 1882096.613 | 5771342.996 | 295.004   | Debris HC  | 3308     | 295.0402 | 0.0362     | 0.0362   | 294.9162   | -0.0878    | 0.0878     |
| UTUHINA | 1882096.613 | 5771342.996 | 295.004   | Debris HC  | 3316     | 295.0061 | 0.0021     | 0.0021   | 294.8844   | -0.1196    | 0.1196     |
| UTUHINA | 1882162.969 | 5771375.846 | 294.533   | Debris HC  | 3380     | 294.7106 | 0.1776     | 0.1776   | 294.6158   | 0.0828     | 0.0828     |
| UTUHINA | 1882162.969 | 5771375.846 | 294.533   | Debris HC  | 3388     | 294.6775 | 0.1445     | 0.1445   | 294.5837   | 0.0507     | 0.0507     |
| UTUHINA | 1882252.635 | 5771458.632 | 293.837   | Debris HC  | 3666     | 293.8811 | 0.0441     | 0.0441   | 293.7297   | -0.1073    | 0.1073     |
| UTUHINA | 1882252.635 | 5771458.632 | 293.837   | Debris HC  | 3670     | 293.8672 | 0.0302     | 0.0302   | 293.7160   | -0.1210    | 0.1210     |
| UTUHINA | 1882252.635 | 5771458.632 | 293.837   | Debris HC  | 3678     | 293.8393 | 0.0023     | 0.0023   | 293.6885   | -0.1485    | 0.1485     |
| UTUHINA | 1882278.621 | 5771485.451 | 293.844   | Debris HC  | 3706     | 293.7401 | -0.1039    | 0.1039   | 293.5902   | -0.2538    | 0.2538     |
| UTUHINA | 1882278.621 | 5771485.451 | 293.844   | Debris HC  | 3710     | 293.7256 | -0.1184    | 0.1184   | 293.5759   | -0.2681    | 0.2681     |
| UTUHINA | 1882278.621 | 5771485.451 | 293.844   | Debris HC  | 3714     | 293.7112 | -0.1328    | 0.1328   | 293.5616   | -0.2824    | 0.2824     |
| UTUHINA | 1882326.964 | 5771629.189 | 293.253   | Debris HC  | 3901     | 293.1037 | -0.1493    | 0.1493   | 292.9589   | -0.2941    | 0.2941     |
| UTUHINA | 1882326.964 | 5771629.189 | 293.253   | Debris HC  | 3905     | 293.0941 | -0.1589    | 0.1589   | 292.9492   | -0.3038    | 0.3038     |
| UTUHINA | 1882329.818 | 5771663.561 | 293.182   | Debris HC  | 3953     | 293.0032 | -0.1788    | 0.1788   | 292.8546   | -0.3274    | 0.3274     |
| UTUHINA | 1882329.818 | 5771663.561 | 293.182   | Debris HC  | 3957     | 292.9957 | -0.1863    | 0.1863   | 292.8470   | -0.3350    | 0.3350     |
| UTUHINA | 1882332.740 | 5771673.869 | 293.094   | Debris HC  | 3969     | 292.9735 | -0.1205    | 0.1205   | 292.8244   | -0.2696    | 0.2696     |
| UTUHINA | 1882332.740 | 5771673.869 | 293.094   | Debris HC  | 3973     | 292.9662 | -0.1278    | 0.1278   | 292.8169   | -0.2771    | 0.2771     |
| UTUHINA | 1882332.740 | 5771673.869 | 293.094   | Debris HC  | 3981     | 292.9515 | -0.1425    | 0.1425   | 292.8021   | -0.2919    | 0.2919     |
| UTUHINA | 1882340.236 | 5771677.633 | 292.951   | Debris HC  | 4060     | 292.7964 | -0.1546    | 0.1546   | 292.6483   | -0.3027    | 0.3027     |
| UTUHINA | 1882481.285 | 5771704.968 | 292.427   | Debris HC  | 4250     | 292.4011 | -0.0259    | 0.0259   | 292.2480   | -0.1790    | 0.1790     |
| UTUHINA | 1882481.285 | 5771704.968 | 292.427   | Debris HC  | 4262     | 292.3761 | -0.0509    | 0.0509   | 292.2252   | -0.2018    | 0.2018     |
| UTUHINA | 1882481.285 | 5771704.968 | 292.427   | Debris HC  | 4274     | 292.3546 | -0.0724    | 0.0724   | 292.2043   | -0.2227    | 0.2227     |
| UTUHINA | 1882481.285 | 5771704.968 | 292.427   | Debris HC  | 4290     | 292.3249 | -0.1021    | 0.1021   | 292.1754   | -0.2516    | 0.2516     |
| UTUHINA | 1882481.285 | 5771704.968 | 292.427   | Debris HC  | 4310     | 292.2846 | -0.1424    | 0.1424   | 292.1368   | -0.2902    | 0.2902     |
| UTUHINA | 1882481.285 | 5771704.968 | 292.427   | Debris HC  | 4314     | 292.2772 | -0.1498    | 0.1498   | 292.1297   | -0.2973    | 0.2973     |
| UTUHINA | 1882537.549 | 5771717.025 | 292.178   | Debris HC  | 4348     | 292.2118 | 0.0338     | 0.0338   | 292.0658   | -0.1122    | 0.1122     |
| UTUHINA | 1882569.623 | 5771693.541 | 292.080   | Debris HC  | 4410     | 292.0953 | 0.0153     | 0.0153   | 291.9496   | -0.1304    | 0.1304     |
| UTUHINA | 1882662.607 | 5771746.561 | 291.731   | debris hc  | 4511     | 291.8703 | 0.1393     | 0.1393   | 291.7269   | -0.0041    | 0.004      |
| UTUHINA | 1882662.607 | 5771746.561 | 291.731   | debris hc  | 4526     | 291.8353 | 0.1043     | 0.1043   | 291.6913   | -0.0397    | 0.039      |
| UTUHINA | 1882662.494 | 5771855.377 | 291.533   | debris mc  | 4736     | 291.3405 | -0.1925    | 0.1925   | 291.1991   | -0.3339    | 0.333      |
| UTUHINA | 1882662.494 | 5771855.377 | 291.533   | debris mc  | 4740     | 291.3347 | -0.1983    | 0.1983   | 291.1931   | -0.3399    | 0.3399     |
| UTUHINA | 1882662.494 | 5771855.377 | 291.533   | debris mc  | 4748     | 291.3234 | -0.2096    | 0.2096   | 291.1816   | -0.3514    | 0.3514     |
| UTUHINA | 1882712.930 | 5771854.898 | 291.537   | debris hc  | 4788     | 291.2739 | -0.2631    | 0.2631   | 291.1309   | -0.4061    | 0.406      |
| UTUHINA | 1882712.930 | 5771854.898 | 291.537   | debris hc  | 4796     | 291.2650 | -0.2720    | 0.2720   | 291.1216   | -0.4154    | 0.415      |
| UTUHINA | 1882780.798 | 5771889.329 | 291.491   | debris mc  | 4864     | 291.1721 | -0.3189    | 0.3189   | 291.0274   | -0.4636    | 0.463      |



|                 |             |             |           |                        |              | Mo                   | del predic         | tion     | Mo                   | del predict | ion         |
|-----------------|-------------|-------------|-----------|------------------------|--------------|----------------------|--------------------|----------|----------------------|-------------|-------------|
|                 |             | Recorded    | l debris  |                        |              | NLR c                | alibration         | model    | revised NI           | .R model (d | esign runs) |
| Branch          | Easting     | Northing    | Elevation | Feature_Co             | Chainage     | Model                | Error              | absolute | Model                | Error       | absolute    |
| UTUHINA         | 1882780.798 | 5771889.329 | 291.491   | debris mc              | 4868         | 291.1671             | -0.3239            | 0.3239   | 291.0220             | -0.4690     | 0.4690      |
| UTUHINA         | 1882675.117 | 5771978.086 | 291.009   | debris hc              | 5085         | 290.8662             | -0.1428            | 0.1428   | 290.7262             | -0.2828     | 0.2828      |
| UTUHINA         | 1882711.733 | 5772008.301 | 290.988   | debris hc              | 5125         | 290.8165             | -0.1715            | 0.1715   | 290.6779             | -0.3101     | 0.3101      |
| UTUHINA         | 1882711.733 | 5772008.301 | 290.988   | debris hc              | 5132         | 290.8064             | -0.1816            | 0.1816   | 290.6682             | -0.3198     | 0.3198      |
| UTUHINA         | 1882743.989 | 5772040.271 | 290.938   | debris hc              | 5168         | 290.7563             | -0.1817            | 0.1817   | 290.6207             | -0.3173     | 0.3173      |
| UTUHINA         | 1882743.989 | 5772040.271 | 290.938   | debris hc              | 5180         | 290.7395             | -0.1985            | 0.1985   | 290.6048             | -0.3332     | 0.3332      |
| UTUHINA         | 1882736.822 | 5772079.157 | 290.712   | debris hc              | 5196         | 290.7173             | 0.0053             | 0.0053   | 290.5837             | -0.1283     | 0.1283      |
| UTUHINA         | 1882768.428 | 5772096.169 | 290.345   | debris hc              | 5366         | 290.4873             | 0.1423             | 0.1423   | 290.3555             | 0.0105      | 0.0105      |
| UTUHINA         | 1882768.428 | 5772096.169 | 290.345   | debris hc              | 5374         | 290.4753             | 0.1303             | 0.1303   | 290.3441             | -0.0009     | 0.0009      |
| UTUHINA         | 1882807.636 | 5772165.544 | 290.165   | debris mc              | 5484         | 290.3178             | 0.1528             | 0.1528   | 290.1866             | 0.0216      | 0.0216      |
| UTUHINA         | 1882807.636 | 5772165.544 | 290.165   | debris mc              | 5492         | 290.3035             | 0.1385             | 0.1385   | 290.1727             | 0.0077      | 0.0077      |
| UTUHINA         | 1882800.767 | 5772191.420 | 290.208   | debris hc              | 5516         | 290.2565             | 0.0485             | 0.0485   | 290.1284             | -0.0796     | 0.0796      |
| UTUHINA         | 1882800.767 | 5772191.420 | 290.208   | debris hc              | 5528         | 290.2350             | 0.0270             | 0.0270   | 290.1086             | -0.0994     | 0.0994      |
| UTUHINA         | 1882801.550 | 5772209.289 | 290.047   | debris mc              | 5544         | 290.2131             | 0.1661             | 0.1661   | 290.0871             | 0.0401      | 0.0401      |
| UTUHINA         | 1882801.550 | 5772209.289 | 290.047   | debris mc              | 5555         | 290.1945             | 0.1475             | 0.1475   | 290.0694             | 0.0224      | 0.0224      |
| UTUHINA         | 1882801.550 | 5772209.289 |           | debris mc              | 5571         | 290.1693             | 0.1223             | 0.1223   | 290.0453             | -0.0017     | 0.0017      |
| UTUHINA         | 1882808.547 | 5772200.477 |           | debris hc              | 5627         | 290.0754             | 0.0364             | 0.0364   | 289.9558             |             | 0.0832      |
| UTUHINA         | 1882808.547 | 5772200.477 |           | debris hc              | 5631         | 290.0668             | 0.0278             | 0.0278   | 289.9471             | -0.0919     | 0.0919      |
| UTUHINA         | 1882808.547 | 5772200.477 |           | debris hc              | 5635         | 290.0539             | 0.0149             | 0.0149   | 289.9370             | -           | 0.1020      |
| UTUHINA         | 1882972.766 | 5772163.075 | 289.617   | debris mc              | 5856         | 289.7161             | 0.0991             | 0.0991   | 289.6235             | 0.0065      | 0.0065      |
| UTUHINA         | 1882972.766 | 5772163.075 |           | debris mc              | 5860         | 289.7133             | 0.0963             | 0.0963   | 289.6210             |             | 0.0040      |
| UTUHINA         | 1883046.920 | 5772189.712 |           | debris mc              | 5931         | 289.6751             | -0.0669            | 0.0669   | 289.5868             |             | 0.1552      |
| UTUHINA         | 1882957.142 | 5772259.594 |           | Debris HC              | 6040         | 289.4382             | -0.1668            | 0.1668   | 289.2982             | -0.3068     | 0.3068      |
| UTUHINA         | 1882977.887 | 5772361.150 |           | Debris HC              | 6321         | 288.9862             | -0.1768            | 0.1768   | 288.8351             | -0.3279     | 0.3279      |
| UTUHINA         | 1882979.240 | 5772504.577 |           | Debris HC              | 6486         | 288.6157             | -0.3063            | 0.3063   | 288.4637             | -0.4583     | 0.4583      |
| UTUHINA         | 1882912.597 | 5772577.292 |           | Debris HC              | 6781         | 288.2135             | -0.0615            | 0.0615   | 288.0634             | -0.2116     | 0.2116      |
| UTUHINA         | 1882912.597 | 5772577.292 |           | Debris HC              | 6809         | 288.1868             | -0.0882            | 0.0882   | 288.0357             | -0.2393     | 0.2393      |
| UTUHINA         | 1882912.597 | 5772577.292 |           | Debris HC              | 6833         | 288.1628             | -0.1122            | 0.1122   | 288.0119             | -           | 0.2631      |
| UTUHINA         | 1882902.916 | 5772609.548 |           | Debris HC              | 6913         | 288.0818             | -0.1102            | 0.1102   | 287.9306             |             | 0.2614      |
| UTUHINA         | 1882902.916 | 5772609.548 |           | Debris HC              | 6917         | 288.0783             | -0.1137            | 0.1137   | 287.9269             |             | 0.2651      |
| UTUHINA         | 1883001.195 | 5772658.699 |           | Debris HC              | 7128         | 287.8469             | 0.0879             | 0.0879   | 287.6898             | -0.0692     | 0.0692      |
| UTUHINA         | 1883034.566 | 5772762.284 |           | Debris HC              | 7304         | 287.5766             | 0.0066             | 0.0066   | 287.4203             |             | 0.1497      |
| UTUHINA         | 1883034.566 | 5772762.284 |           | Debris HC              | 7312         | 287.5623             | -0.0077            | 0.0077   | 287.4064             | -0.1636     | 0.1636      |
| UTUHINA         | 1883005.359 | 5772805.522 |           | Debris HC              | 7428         | 287.3770             | -0.0700            | 0.0700   | 287.2246             |             | 0.2224      |
| UTUHINA         | 1883005.359 | 5772805.522 |           | Debris HC              | 7432         | 287.3716             | -0.0754            | 0.0754   | 287.2193             |             | 0.2277      |
| UTUHINA         | 1882910.014 | 5772820.700 |           | Debris HC              | 7512         | 287.2870             | 0.1730             | 0.1730   | 287.1333             | 0.0193      | 0.0193      |
| UTUHINA         | 1882910.014 | 5772820.700 |           | Debris HC              | 7516         | 287.2834             | 0.1694             | 0.1694   | 287.1295             |             | 0.0155      |
| UTUHINA-BRIDGES | 1882926.144 | 5772869.733 |           | Debris HC              | 7568         | 287.2401             | 0.0591             | 0.0591   | 287.0856             |             | 0.0954      |
| UTUHINA         | 1882893.848 | 5772900.938 |           | Debris HC              | 7751         | 286.9426             | -0.0814            | 0.0814   | 286.7937             | -0.2303     | 0.2303      |
| UTUHINA         | 1882893.848 | 5772900.938 |           | Debris HC              | 7755         | 286.9374             | -0.0866            | 0.0866   | 286.7882             | -0.2358     | 0.2358      |
| UTUHINA         | 1882807.796 | 5772970.344 |           | Debris HC              | 7866         | 286.7630             | -0.0560            | 0.0560   | 286.6150             |             | 0.2040      |
| UTUHINA         | 1882807.796 | 5772970.344 |           | Debris HC              | 7874         | 286.7504             | -0.0686            | 0.0686   | 286.6024             |             | 0.2040      |
| UTUHINA         | 1882785.050 | 5773059.783 |           | Debris HC              |              | 286.5336             | 0.0096             | 0.0096   | 286.3851             | -0.1389     | 0.1389      |
| UTUHINA         | 1882767.326 | 5773165.409 |           | Debris HC              | 8105         |                      | -0.1103            | 0.1103   | 286.1402             |             | 0.1585      |
| UTUHINA         | 1882767.326 | 5773165.409 |           | Debris HC              | 8113         |                      | -0.1267            | 0.1267   | 286.1242             | -0.2718     | 0.2350      |
| UTUHINA         | 1882773.182 | 5773234.077 |           | Debris HC              | 8113         |                      | -0.0826            | 0.0826   | 285.9982             | -0.2718     | 0.2718      |
| UTUHINA         | 1882773.182 | 5773234.077 |           | Debris HC              | 8180         |                      | -0.0820            | 0.0904   | 285.9905             | -0.2325     | 0.2240      |
| UTUHINA         | 1882766.817 | 5773281.286 |           | Debris HC              | 8224         |                      | -0.0448            | 0.0448   | 285.9072             | -           | 0.1858      |
| UTUHINA         | 1882766.817 | 5773281.286 |           | Debris HC              | 8232         | 286.0333             | -0.0597            | 0.0597   | 285.8924             | -           | 0.2006      |
| UTUHINA         | 1882762.338 | 5773327.432 |           | Debris HC              | 8232         |                      | -0.0988            | 0.0988   | 285.8137             | -0.2393     | 0.2393      |
| UTUHINA         | 1882753.425 | 5773392.649 |           | Debris HC              | 8339         |                      | 0.0681             | 0.0988   | 285.7089             |             | 0.2393      |
| UTUHINA         | 1882753.425 | 5773392.649 |           | Debris HC              | 8347         | 285.8370             | 0.0081             | 0.0081   | 285.6967             | -0.0721     | 0.0721      |
| UTUHINA         | 1882753.423 | 5773452.008 |           | Debris HC              | 8403         | 285.7565             | -0.1105            | 0.0300   | 285.6158             | -           | 0.0843      |
| UTUHINA         | 1882762.048 | 5773452.008 |           | Debris HC              | 8403         | 285.7509             | -0.1105            |          | 285.6102             | -0.2512     |             |
|                 |             |             |           | Debris HC<br>Debris HC |              |                      |                    | 0.1161   |                      |             | 0.2568      |
|                 | 1882762.048 | 5773452.008 |           |                        | 8411<br>8454 | 285.7453<br>285.6848 | -0.1217<br>-0.0272 | 0.1217   | 285.6046<br>285.5440 |             | 0.2624      |
|                 | 1882774.435 | 5773503.079 |           | Debris HC              | -            |                      |                    | 0.0272   |                      |             |             |
| UTUHINA         | 1882829.719 | 5773515.389 | 285.700   | Debris HC              | 8501         | 285.6204             | -0.0796            | 0.0796   | 285.4800             | -0.2200     | 0.2200      |



|         | 1           |             |           | 1               |          | Mo       | del predict | tion     | Mo       | del predict | ion         |
|---------|-------------|-------------|-----------|-----------------|----------|----------|-------------|----------|----------|-------------|-------------|
|         |             | Recorded    | l debris  |                 |          |          | alibration  |          |          |             | esign runs) |
| Branch  | Easting     | Northing    | Elevation | Feature_Co      | Chainage | Model    | Error       | absolute | Model    | Error       | absolute    |
| UTUHINA | 1882829.719 | 5773515.389 | 285.700   | Debris HC       | 8505     | 285.6151 | -0.0849     | 0.0849   | 285.4747 | -0.2253     | 0.2253      |
| UTUHINA | 1882916.865 | 5773503.208 | 285.581   | Debris HC       | 8608     | 285.4776 | -0.1034     | 0.1034   | 285.3401 | -0.2409     | 0.2409      |
| UTUHINA | 1882921.851 | 5773507.762 | 285.553   | Debris HC       | 8616     | 285.4665 | -0.0865     | 0.0865   | 285.3293 | -0.2237     | 0.2237      |
| UTUHINA | 1882947.528 | 5773549.974 | 285.342   | Debris HC       | 8691     | 285.3543 | 0.0123      | 0.0123   | 285.2191 | -0.1229     | 0.1229      |
| UTUHINA | 1882947.528 | 5773549.974 | 285.342   | Debris HC       | 8699     | 285.3412 | -0.0008     | 0.0008   | 285.2064 | -0.1356     | 0.1356      |
| UTUHINA | 1882925.410 | 5773563.562 | 285.364   | Debris HC       | 8731     | 285.2846 | -0.0794     | 0.0794   | 285.1516 | -0.2124     | 0.2124      |
| UTUHINA | 1882912.177 | 5773604.567 | 285.363   | Debris HC       | 8763     | 285.2206 | -0.1424     | 0.1424   | 285.0903 | -0.2727     | 0.2727      |
| UTUHINA | 1883008.739 | 5773710.538 | 284.636   | Debris HC       | 9128     | 284.6240 | -0.0120     | 0.0120   | 284.4958 | -0.1402     | 0.1402      |
| UTUHINA | 1883044.858 | 5773669.967 | 284.435   | Debris HC       | 9200     | 284.4822 | 0.0472      | 0.0472   | 284.3588 | -0.0762     | 0.0762      |
| UTUHINA | 1883090.377 | 5773675.835 | 284.372   | Debris HC       | 9248     | 284.3848 | 0.0128      | 0.0128   | 284.2620 | -0.1100     | 0.1100      |
| UTUHINA | 1883102.564 | 5773743.361 | 284.347   | Debris HC       | 9340     | 284.1794 | -0.1676     | 0.1676   | 284.0522 | -0.2948     | 0.2948      |
| UTUHINA | 1883143.627 | 5773766.455 | 284.185   | Debris HC       | 9375     | 284.1095 | -0.0755     | 0.0755   | 283.9820 | -0.2030     | 0.2030      |
| UTUHINA | 1883143.627 | 5773766.455 | 284.185   | Debris HC       | 9391     | 284.0798 | -0.1052     | 0.1052   | 283.9524 | -0.2326     | 0.2326      |
| UTUHINA | 1883217.240 | 5773818.282 | 283.963   | Debris HC       | 9498     | 283.8806 | -0.0824     | 0.0824   | 283.7576 | -0.2054     | 0.2054      |
| UTUHINA | 1883217.240 | 5773818.282 | 283.963   | Debris HC       | 9502     | 283.8723 | -0.0907     | 0.0907   | 283.7496 | -0.2134     | 0.2134      |
| UTUHINA | 1883217.240 | 5773818.282 | 283.963   | Debris HC       | 9522     | 283.8286 | -0.1344     | 0.1344   | 283.7073 | -0.2557     | 0.2557      |
| UTUHINA | 1883240.209 | 5773877.070 | 283.949   | Debris HC       | 9578     | 283.7053 | -0.2437     | 0.2437   | 283.5791 | -0.3699     | 0.3699      |
| UTUHINA | 1883240.209 | 5773877.070 | 283.949   | Debris HC       | 9580     | 283.7009 | -0.2481     | 0.2481   | 283.5744 | -0.3746     | 0.3746      |
| UTUHINA | 1883240.209 | 5773877.070 | 283.949   | Debris HC       | 9585     | 283.6880 | -0.2610     | 0.2610   | 283.5604 | -0.3886     | 0.3886      |
| UTUHINA | 1883261.694 | 5773882.450 | 283.674   | Debris MC       | 9597     | 283.6615 | -0.0125     | 0.0125   | 283.5324 | -0.1416     | 0.1416      |
| UTUHINA | 1883424.553 | 5774032.153 | 283.382   | Debris HC       | 9836     | 283.1208 | -0.2613     | 0.2613   | 282.9942 | -0.3879     | 0.3879      |
| UTUHINA | 1883440.398 | 5774056.004 | 283.346   | Debris HC       | 9866     | 283.0684 | -0.2776     | 0.2776   | 282.9426 | -0.4034     | 0.4034      |
| UTUHINA | 1883476.871 | 5774114.395 | 283.234   | Debris clear MC | 9921     | 282.9892 | -0.2448     | 0.2448   | 282.8648 | -0.3692     | 0.3692      |
| UTUHINA | 1883476.871 | 5774114.395 | 283.234   | Debris clear MC | 9931     | 282.9769 | -0.2571     | 0.2571   | 282.8530 | -0.3810     | 0.3810      |
| UTUHINA | 1883476.871 | 5774114.395 | 283.234   | Debris clear MC | 9948     | 282.9560 | -0.2780     | 0.2780   | 282.8330 | -0.4010     | 0.4010      |
| AVERAGE |             |             |           |                 | 0        |          | -0.0664     | 0.1168   |          | -0.2038     | 0.2084      |



# APPENDIX F-Design Level Results

Peak flood levels





#### F Design Level Results

The following tables present design scenario flood levels for the Utuhina, Mangakakahi and Otamatea Streams.

In the lower reaches, downstream of Old Taupo Road, where the Kaituna Catchment Control Scheme specifies a 1% AEP standard of protection, design levels including freeboard are provided. As outlined in section 5.6, an increased freeboard of 700 mm is assumed, in light of calibration results. Existing bank levels are also provided in the following tables for the lower reaches, although in some cases the top of the bank is not well-defined (especially between Old Taupo Road and Lake Road).

Cross-section locations are shown in Appendix D.

All levels are in terms of Moturiki Datum 1953.

|   |   | 3 |   |
|---|---|---|---|
| D | ŀ |   | Y |

## F.1 Utuhina Stream

| <b>Cross-section</b> | Model    | Existing to | Existing top of bank |        |                        | Peak flood levels | d levels |              |         | Design    | Design Levels    |
|----------------------|----------|-------------|----------------------|--------|------------------------|-------------------|----------|--------------|---------|-----------|------------------|
| (2018 survey)        | Chainage |             |                      | Cul    | <b>Current climate</b> | te                | 2        | 2130 climate |         | (with Fre | (with Freeboard) |
|                      | (m)      | Left bank   | Right bank           | 2%AEP  | 1% AEP                 | 0.2%AEP           | 2%AEP    | 1% AEP       | 0.2%AEP | 1% AEP    | 1% AEP 2130      |
| uxs85                | -2960    |             |                      | 338.00 | 338.42                 | 339.34            | 338.99   | 339.58       | 341.00  |           |                  |
| uxs84                | -2720    |             |                      | 336.89 | 337.45                 | 338.43            | 338.07   | 338.67       | 340.12  |           |                  |
| uxs83                | -2483    |             |                      | 335.58 | 336.08                 | 337.34            | 336.89   | 337.63       | 339.21  |           |                  |
| uxs82                | -2156    |             |                      | 334.59 | 335.06                 | 336.20            | 335.79   | 336.47       | 337.98  |           |                  |
| uxs81                | -1895    |             |                      | 333.60 | 334.12                 | 335.20            | 334.86   | 335.43       | 336.75  |           |                  |
| uxs80                | -1638    |             |                      | 332.04 | 332.61                 | 333.60            | 333.27   | 333.82       | 335.11  |           |                  |
| uxs79                | -1359    |             |                      | 330.19 | 330.71                 | 331.82            | 331.46   | 332.06       | 333.45  |           |                  |
| uxs78                | -1168    |             |                      | 327.82 | 328.14                 | 329.19            | 328.76   | 329.51       | 331.43  |           |                  |
| uxs77                | -981     |             |                      | 325.83 | 326.58                 | 328.49            | 327.82   | 328.94       | 331.24  |           |                  |
| uxs76                | -760     |             |                      | 325.56 | 326.23                 | 327.94            | 327.34   | 328.33       | 330.34  |           |                  |
| uxs75                | -497     |             |                      | 323.12 | 323.52                 | 324.44            | 324.12   | 324.67       | 325.88  |           |                  |
| uxs74                | -249     |             |                      | 319.69 | 320.06                 | 320.96            | 320.63   | 321.18       | 322.36  |           |                  |
| uxs73                | -100     |             |                      | 317.39 | 317.74                 | 318.70            | 318.34   | 318.93       | 320.13  |           |                  |
| uxs72                | 188      |             |                      | 313.58 | 313.96                 | 314.95            | 314.60   | 315.18       | 316.46  |           |                  |
| uxs71                | 395      |             |                      | 311.43 | 311.85                 | 312.90            | 312.52   | 313.18       | 314.64  |           |                  |
| uxs70                | 678      |             |                      | 308.56 | 309.06                 | 310.24            | 309.84   | 310.49       | 311.79  |           |                  |
| uxs69                | 901      |             |                      | 307.00 | 307.48                 | 308.51            | 308.16   | 308.74       | 310.47  |           |                  |
| xs68                 | 1102     |             |                      | 304.81 | 305.38                 | 306.59            | 306.19   | 306.95       | 309.86  |           |                  |
| ub68down             | 1140     |             |                      | 304.47 | 305.03                 | 306.36            | 305.89   | 306.65       | 308.33  |           |                  |
| uxs67                | 1363     |             |                      | 303.78 | 304.29                 | 305.50            | 305.06   | 305.78       | 307.29  |           |                  |
| uxs66                | 1569     |             |                      | 302.48 | 302.97                 | 304.24            | 303.78   | 304.53       | 306.10  |           |                  |
| uxs65                | 1793     |             |                      | 301.27 | 301.76                 | 303.14            | 302.65   | 303.45       | 304.99  |           |                  |
| uxs64                | 2002     |             |                      | 299.82 | 300.42                 | 301.85            | 301.39   | 302.15       | 303.62  |           |                  |
| ub64down             | 2012     |             |                      | 299.81 | 300.40                 | 301.80            | 301.33   | 302.07       | 303.44  |           |                  |
| uxs63                | 2146     |             |                      | 299.16 | 299.68                 | 300.95            | 300.50   | 301.25       | 302.73  |           |                  |
| uxs62                | 2520     |             |                      | 297.29 | 297.77                 | 298.85            | 298.50   | 299.08       | 300.05  |           |                  |
| uxs61                | 2718     |             |                      | 296.54 | 296.88                 | 297.66            | 297.43   | 297.81       | 298.65  |           |                  |
| uxs60                | 2916     |             |                      | 295.93 | 296.35                 | 297.21            | 296.93   | 297.40       | 298.38  |           |                  |
| ub60up               | 2933     |             |                      | 295.87 | 296.29                 | 297.16            | 296.87   | 297.36       | 298.40  |           |                  |
| ub60down             | 2949     |             |                      | 295.82 | 296.24                 | 297.09            | 296.80   | 297.28       | 298.25  |           |                  |

| <b>Cross-section</b> | Model    | Existing to | Existing top of bank |        |                        | Peak flood levels | d levels |              |         | Design           | Design Levels |
|----------------------|----------|-------------|----------------------|--------|------------------------|-------------------|----------|--------------|---------|------------------|---------------|
| (2018 survey)        | Chainage |             |                      | Cu     | <b>Current climate</b> | le                | 2        | 2130 climate |         | (with Freeboard) | eboard)       |
|                      | (m)      | Left bank   | Right bank           | 2% AEP | 1%AEP                  | 0.2% AEP          | 2% AEP   | 1% AEP       | 0.2%AEP | 1%AEP            | 1% AEP 2130   |
| uxs59                | 3140     |             |                      | 295.17 | 295.59                 | 296.55            | 296.23   | 296.74       | 297.82  |                  |               |
| uxs58                | 3340     |             |                      | 294.57 | 294.95                 | 295.81            | 295.53   | 296.00       | 297.11  |                  |               |
| uxs56                | 3738     |             |                      | 293.24 | 293.74                 | 294.86            | 294.54   | 295.07       | 296.31  |                  |               |
| uxs55                | 4013     |             |                      | 292.53 | 293.08                 | 294.16            | 293.95   | 294.31       | 295.45  |                  |               |
| uxs54                | 4170     |             |                      | 292.20 | 292.77                 | 293.88            | 293.69   | 294.03       | 295.29  |                  |               |
| uxs53                | 4310     |             |                      | 291.98 | 292.56                 | 293.66            | 293.51   | 293.80       | 295.16  |                  |               |
| ub52up               | 4437     |             |                      | 291.78 | 292.36                 | 293.42            | 293.34   | 293.53       | 294.95  |                  |               |
| uxs52                | 4463     |             |                      | 291.70 | 292.23                 | 293.24            | 292.95   | 293.40       | 294.11  |                  |               |
| uxs51                | 4673     |             |                      | 291.20 | 291.75                 | 292.83            | 292.54   | 292.97       | 293.46  |                  |               |
| uxs49                | 5069     |             |                      | 290.64 | 291.24                 | 292.26            | 292.02   | 292.35       | 292.67  |                  |               |
| uxs48                | 5311     |             |                      | 290.34 | 290.96                 | 291.92            | 291.69   | 292.01       | 292.31  |                  |               |
| uxs47                | 5492     |             |                      | 290.09 | 290.74                 | 291.64            | 291.44   | 291.72       | 291.99  |                  |               |
| uxs46                | 5722     |             |                      | 289.73 | 290.41                 | 291.21            | 291.05   | 291.27       | 291.55  |                  |               |
| uxs45                | 5943     |             |                      | 289.55 | 290.28                 | 291.04            | 290.89   | 291.10       | 291.39  |                  |               |
| ub45down             | 5968     |             |                      | 289.35 | 289.87                 | 291.00            | 290.73   | 291.08       | 291.32  |                  |               |
| uxs44                | 6112     |             |                      | 289.14 | 289.66                 | 290.80            | 290.53   | 290.88       | 291.16  |                  |               |
| uxs43                | 6333     |             |                      | 288.76 | 289.32                 | 290.51            | 290.24   | 290.61       | 290.99  |                  |               |
| uxs42                | 6494     |             |                      | 288.44 | 289.00                 | 290.21            | 289.92   | 290.33       | 290.79  |                  |               |
| uxs41                | 6705     |             |                      | 288.15 | 288.71                 | 289.94            | 289.65   | 290.07       | 290.60  |                  |               |
| uxs39                | 7092     |             |                      | 287.75 | 288.34                 | 289.59            | 289.32   | 289.72       | 290.38  |                  |               |
| ub37up               | 7568     |             |                      | 287.12 | 287.75                 | 289.18            | 288.87   | 289.33       | 290.25  |                  |               |
| ub37down             | 7592     |             |                      | 287.07 | 287.63                 | 288.90            | 288.55   | 289.08       | 289.99  |                  |               |
| uxs37                | 7665     |             |                      | 286.94 | 287.52                 | 288.80            | 288.45   | 288.98       | 289.92  |                  |               |
| uxs36                | 7775     |             |                      | 286.79 | 287.37                 | 288.66            | 288.32   | 288.85       | 289.79  |                  |               |
| uxs35                | 7992     |             |                      | 286.42 | 287.01                 | 288.26            | 287.93   | 288.43       | 289.35  |                  |               |
| uxs34                | 8113     |             |                      | 286.17 | 286.75                 | 287.97            | 287.66   | 288.14       | 288.99  |                  |               |
| uxs33                | 8375     |             |                      | 285.72 | 286.30                 | 287.44            | 287.16   | 287.58       | 288.18  |                  |               |
| uxs32                | 8588     |             |                      | 285.45 | 286.02                 | 287.09            | 286.85   | 287.21       | 287.75  |                  |               |
| uxs31                | 8775     |             |                      | 285.17 | 285.73                 | 286.83            | 286.58   | 286.96       | 287.53  |                  |               |
| uxs30                | 8957     |             |                      | 284.91 | 285.49                 | 286.64            | 286.37   | 286.78       | 287.38  |                  |               |





| <b>Cross-section</b> | Model    | Existing to | Existing top of bank |        |                        | Peak flood levels | d levels |              |         | Design Levels    | Levels      |
|----------------------|----------|-------------|----------------------|--------|------------------------|-------------------|----------|--------------|---------|------------------|-------------|
| (2018 survey)        | Chainage |             |                      | Cu     | <b>Current climate</b> | te                | 2        | 2130 climate | 0       | (with Freeboard) | eboard)     |
|                      | (m)      | Left bank   | Right bank           | 2% AEP | 1% AEP                 | 0.2% AEP          | 2% AEP   | 1% AEP       | 0.2%AEP | 1% AEP           | 1% AEP 2130 |
| uxs28                | 9280     |             |                      | 284.41 | 284.96                 | 286.02            | 285.78   | 286.15       | 286.79  |                  |             |
| uxs27                | 9554     |             |                      | 284.07 | 284.59                 | 285.53            | 285.36   | 285.66       | 286.15  |                  |             |
| uxs26                | 9830     |             |                      | 283.64 | 284.18                 | 285.07            | 284.97   | 285.15       | 285.39  |                  |             |
| ub25up               | 9980     |             |                      | 283.51 | 284.04                 | 284.95            | 284.84   | 285.02       | 285.26  |                  |             |
| uxs25                | 10015    |             |                      | 283.30 | 283.66                 | 284.22            | 284.10   | 284.30       | 284.57  | 284.36           | 285.00      |
| uxs23                | 10143    | 283.88      |                      | 283.16 | 283.49                 | 284.05            | 283.93   | 284.13       | 284.40  | 284.19           | 284.83      |
| mxs1a                | 10204    |             |                      | 283.14 | 283.47                 | 284.03            | 283.91   | 284.11       | 284.36  | 284.17           | 284.81      |
| mxs1b                | 10218    |             |                      | 283.12 | 283.44                 | 283.98            | 283.86   | 284.06       | 284.30  | 284.14           | 284.76      |
| uxs22                | 10249    |             |                      | 283.08 | 283.39                 | 283.94            | 283.81   | 284.02       | 284.26  | 284.09           | 284.72      |
| uxs21                | 10288    | 283.64      | 283.40               | 283.02 | 283.31                 | 283.83            | 283.71   | 283.90       | 284.17  | 284.01           | 284.60      |
| uxs20                | 10363    |             |                      | 282.92 | 283.20                 | 283.70            | 283.57   | 283.75       | 284.01  | 283.90           | 284.45      |
| UB20                 | 10375    |             |                      | 282.91 | 283.18                 | 283.64            | 283.56   | 283.74       | 283.99  | 283.88           | 284.44      |
| uxs18                | 10493    | 283.63      | 283.55               | 282.77 | 283.04                 | 283.47            | 283.40   | 283.57       | 283.81  | 283.74           | 284.27      |
| uxs17                | 10561    | 283.56      | 282.19               | 282.70 | 282.97                 | 283.39            | 283.32   | 283.47       | 283.72  | 283.67           | 284.17      |
| uxs16                | 10648    | 283.02      | 281.88               | 282.66 | 282.92                 | 283.35            | 283.28   | 283.44       | 283.68  | 283.62           | 284.14      |
| uxs15                | 10710    | 282.53      | 282.82               | 282.59 | 282.86                 | 283.29            | 283.22   | 283.38       | 283.62  | 283.56           | 284.08      |
| uxs14                | 10767    | 282.03      | 282.28               | 282.51 | 282.77                 | 283.19            | 283.12   | 283.26       | 283.49  | 283.47           | 283.96      |
| uxs013               | 10849    | 282.56      | 282.91               | 282.39 | 282.66                 | 283.07            | 283.01   | 283.14       | 283.33  | 283.36           | 283.84      |
| uxs12                | 10952    | 282.20      | 282.48               | 282.26 | 282.54                 | 282.97            | 282.91   | 283.03       | 283.21  | 283.24           | 283.73      |
| uxs11                | 11008    | 282.19      | 282.19               | 282.12 | 282.44                 | 282.91            | 282.85   | 282.98       | 283.15  | 283.14           | 283.68      |
| uxs10                | 11023    |             |                      | 282.08 | 282.40                 | 282.90            | 282.83   | 282.97       | 283.16  | 283.10           | 283.67      |
| uxs08                | 11072    | 282.40      | 282.14               | 282.02 | 282.21                 | 282.42            | 282.38   | 282.46       | 282.58  | 282.91           | 283.16      |
| uxs07                | 11131    | 282.20      |                      | 281.91 | 282.10                 | 282.31            | 282.28   | 282.34       | 282.45  | 282.80           | 283.04      |
| uxs05                | 11297    | 281.91      |                      | 281.54 | 281.71                 | 281.95            | 281.92   | 281.98       | 282.05  | 282.41           | 282.68      |
| uxs03                | 11417    | 281.63      | 281.05               | 281.27 | 281.44                 | 281.69            | 281.66   | 281.72       | 281.81  | 282.14           | 282.42      |
| uxs02                | 11483    | 281.52      | 280.78               | 281.15 | 281.31                 | 281.55            | 281.52   | 281.59       | 281.70  | 282.01           | 282.29      |
| uxs01                | 11561    | 281.38      | 281.36               | 280.87 | 280.99                 | 281.19            | 281.16   | 281.23       | 281.33  | 281.69           | 281.93      |
| ulxs02               | 11616    |             |                      | 280.56 | 280.65                 | 280.83            | 280.80   | 280.87       | 280.97  | 281.35           | 281.57      |
| ulxs01               | 11704    |             |                      | 280.28 | 280.29                 | 280.37            | 280.40   | 280.41       | 280.48  | 280.99           | 281.11      |



| <b>Cross-section</b> | Model    | Existing to | isting top of bank |        |                        | Peak flood levels | d levels |              |          | Desig    | Design Levels    |
|----------------------|----------|-------------|--------------------|--------|------------------------|-------------------|----------|--------------|----------|----------|------------------|
| (2018 survey)        | Chainage |             |                    | Cui    | <b>Current climate</b> | e                 | 2        | 2130 climate | 0        | (with Fr | (with Freeboard) |
|                      | (m)      | Left bank   | Right bank         | 2%AEP  | 1% AEP                 | 0.2%AEP           | 2%AEP    | 1% AEP       | 0.2% AEP | 1%AEP    | 1% AEP 2130      |
| mb31up               | 4711     |             |                    | 321.45 | 321.50                 | 321.61            | 321.58   | 321.64       | 321.80   |          |                  |
| mb31down             | 4723     |             |                    | 321.22 | 321.27                 | 321.38            | 321.35   | 321.41       | 321.57   |          |                  |
| mb26up               | 5766     |             |                    | 303.28 | 303.35                 | 303.56            | 303.50   | 303.62       | 303.93   |          |                  |
| mb26down             | 5784     |             |                    | 302.97 | 303.07                 | 303.32            | 303.25   | 303.39       | 303.72   |          |                  |
| mb22up               | 6869     |             |                    | 294.89 | 295.03                 | 295.31            | 295.26   | 295.40       | 295.69   |          |                  |
| mb22down             | 6894     |             |                    | 294.72 | 294.86                 | 295.16            | 295.10   | 295.26       | 295.53   |          |                  |
| mb17up               | 7882     |             |                    | 289.34 | 289.40                 | 289.48            | 289.46   | 289.53       | 289.63   |          |                  |
| mb17down             | 7901     |             |                    | 289.24 | 289.28                 | 289.37            | 289.36   | 289.40       | 289.49   |          |                  |
| mb13up               | 8685     |             |                    | 287.15 | 287.28                 | 287.50            | 287.46   | 287.56       | 287.78   |          |                  |
| mb13down             | 8707     |             |                    | 287.05 | 287.16                 | 287.41            | 287.37   | 287.49       | 287.73   |          |                  |
| mb09bdown            | 9792     |             |                    | 284.15 | 284.37                 | 284.76            | 284.72   | 284.84       | 285.05   |          |                  |
| mb09aup              | 9975     |             |                    | 283.69 | 283.97                 | 284.44            | 284.38   | 284.49       | 284.65   |          |                  |
| mb09adown            | 10014    |             |                    | 283.34 | 283.60                 | 284.07            | 283.97   | 284.14       | 284.37   |          |                  |
| mxs34                | 4166     |             |                    | 337.23 | 337.28                 | 337.38            | 337.35   | 337.41       | 337.55   |          |                  |
| m xs 33              | 4448     |             |                    | 327.88 | 327.91                 | 327.98            | 327.96   | 328.00       | 328.10   |          |                  |
| mxs32                | 4651     |             |                    | 322.88 | 322.92                 | 323.01            | 322.98   | 323.04       | 323.16   |          |                  |
| mxs31                | 4825     |             |                    | 318.47 | 318.51                 | 318.60            | 318.58   | 318.63       | 318.77   |          |                  |
| mxs30                | 5045     |             |                    | 313.60 | 313.67                 | 313.84            | 313.78   | 313.88       | 314.04   |          |                  |
| mxs29                | 5300     |             |                    | 308.50 | 308.57                 | 308.73            | 308.69   | 308.78       | 309.01   |          |                  |
| mxs28                | 5438     |             |                    | 306.73 | 306.85                 | 307.12            | 307.05   | 307.20       | 307.56   |          |                  |
| mxs27                | 5658     |             |                    | 304.40 | 304.51                 | 304.78            | 304.70   | 304.85       | 305.16   |          |                  |
| m xs 26              | 5921     |             |                    | 301.71 | 301.82                 | 302.07            | 302.01   | 302.14       | 302.39   |          |                  |
| mxs25                | 6121     |             |                    | 300.36 | 300.45                 | 300.63            | 300.59   | 300.67       | 300.83   |          |                  |
| m xs 24              | 6359     |             |                    | 298.16 | 298.27                 | 298.53            | 298.47   | 298.61       | 298.82   |          |                  |
| mxs23                | 6599     |             |                    | 296.62 | 296.70                 | 296.86            | 296.83   | 296.90       | 297.07   |          |                  |
| mxs22                | 6786     |             |                    | 295.56 | 295.65                 | 295.84            | 295.80   | 295.91       | 296.16   |          |                  |
| mxs21                | 6997     |             |                    | 294.19 | 294.32                 | 294.60            | 294.55   | 294.69       | 294.95   |          |                  |
| mxs20                | 7272     |             |                    | 292.64 | 292.74                 | 292.95            | 292.91   | 293.02       | 293.23   |          |                  |
| mxs19                | 7430     |             |                    | 291.59 | 291.67                 | 291.80            | 291.78   | 291.84       | 291.95   |          |                  |
| mxs18                | 7723     |             |                    | 290.14 | 290.19                 | 290.27            | 290.26   | 290.31       | 290.40   |          |                  |

## F.2 Mangakakahi Stream



| <b>Cross-section</b> | Model    | Existing to | Existing top of bank |        |                        | Peak flood levels | d levels |              |          | Desigr   | Design Levels    |
|----------------------|----------|-------------|----------------------|--------|------------------------|-------------------|----------|--------------|----------|----------|------------------|
| (2018 survey)        | Chainage |             |                      | Cui    | <b>Current climate</b> | te                | 2        | 2130 climate | 0        | (with Fr | (with Freeboard) |
|                      | (m)      | Left bank   | Right bank           | 2% AEP | 1% AEP                 | 0.2% AEP          | 2%AEP    | 1% AEP       | 0.2% AEP | 1%AEP    | 1% AEP 2130      |
| mxs17                | 7920     |             |                      | 289.13 | 289.17                 | 289.26            | 289.25   | 289.29       | 289.39   |          |                  |
| m xs 16              | 8106     |             |                      | 288.51 | 288.57                 | 288.68            | 288.67   | 288.72       | 288.83   |          |                  |
| mxs15                | 8358     |             |                      | 287.57 | 287.61                 | 287.73            | 287.71   | 287.77       | 287.93   |          |                  |
| m xs 14              | 8617     |             |                      | 287.24 | 287.37                 | 287.56            | 287.54   | 287.62       | 287.80   |          |                  |
| m xs 13              | 8766     |             |                      | 286.95 | 287.06                 | 287.31            | 287.27   | 287.40       | 287.63   |          |                  |
| mxs12                | 8947     |             |                      | 286.63 | 286.74                 | 287.04            | 286.99   | 287.16       | 287.48   |          |                  |
| mxs11                | 9176     |             |                      | 286.15 | 286.29                 | 286.66            | 286.60   | 286.82       | 287.26   |          |                  |
| m xs 10              | 9391     |             |                      | 285.51 | 285.66                 | 286.06            | 285.99   | 286.21       | 286.67   |          |                  |
| mxs9                 | 9633     |             |                      | 284.67 | 284.86                 | 285.30            | 285.23   | 285.44       | 285.87   |          |                  |
| dnd90dm              | 9756     |             |                      | 284.17 | 284.40                 | 284.84            | 284.79   | 284.95       | 285.30   |          |                  |
| mxs08                | 9837     |             |                      | 284.02 | 284.25                 | 284.64            | 284.59   | 284.69       | 284.85   |          |                  |
| mxs6                 | 10022    |             |                      | 283.32 | 283.58                 | 284.06            | 283.96   | 284.13       | 284.36   | 284.28   | 284.83           |
| mxs5                 | 10064    |             |                      | 283.27 | 283.55                 | 284.05            | 283.95   | 284.12       | 284.36   | 284.25   | 284.82           |
| mxs4                 | 10089    |             |                      | 283.26 | 283.55                 | 284.05            | 283.95   | 284.12       | 284.35   | 284.25   | 284.82           |
| mxs3                 | 10137    |             |                      | 283.20 | 283.50                 | 284.03            | 283.92   | 284.10       | 284.34   | 284.20   | 284.80           |
| mxs2                 | 10192    |             |                      | 283.14 | 283.47                 | 284.02            | 283.90   | 284.10       | 284.34   | 284.17   | 284.80           |
| mxs1                 | 10232    |             |                      | 283.14 | 283.46                 | 284.02            | 283.90   | 284.10       | 284.34   | 284.16   | 284.80           |
|                      | ,        |             |                      |        |                        |                   |          |              |          |          |                  |



| Cot18 survey)         Chainage         Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cross-section | Model    | Existing to | isting top of bank |        |                        | Peak flood levels | d levels |              |          | Desig    | Design Levels    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-------------|--------------------|--------|------------------------|-------------------|----------|--------------|----------|----------|------------------|
| (m)Left bankRight bank $2\% AE^{0}$ 10401040290.30110401240288.7314312.88.3714312.88.3714312.88.3714312.88.3714312.88.3714312.88.3714312.88.3714312.86.3020652.88.1622902.8722912.88.1622922.8722932.86.1022452.8722452.86.4922452.86.4922452.86.4922452.86.4922452.86.4923642.86.5023642.86.5023652.86.4923652.86.4923662.86.1223672.86.1223682.86.1223692.86.1223692.86.1224532.86.1224532.86.1224532.86.1225632.86.1225642.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.1225652.86.12<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Chainage |             |                    | Cui    | <b>Current climate</b> | te                | 2        | 2130 climate |          | (with Fr | (with Freeboard) |
| 1040       1040       1040         1240       1431       1         1431       1431       1         1431       1609       1         1609       1870       1         1609       1870       1         22065       2065       1         22060       2290       1         2290       2290       1         2290       2290       1         2290       2290       1         2290       2290       1         2290       2866       1         0wn       2843       1         0wn       2846       1         0wn       3315       1         0wn       33463       1         0wn       3645       1         0wn       3645       1         0wn       3839       1         0wn       3889       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |          | Left bank   | Right bank         | 2%AEP  | 1% AEP                 | 0.2% AEP          | 2%AEP    | 1% AEP       | 0.2% AEP | 1% AEP   | 1%AEP 2130       |
| 1240       1240       1         1431       1       1         1431       1       1         1431       1       1         1431       1       1         1431       1       1         1431       1       1         1431       1       1         1870       1       1         2005       2       1         2290       2       1         2245       2       1         244       2       1         2545       2       1         2644       2       1         2645       2       1         2000       2830       1         0000       2368       1         0000       3315       1         0000       33645       1         0000       3645       1         0000       3735       1         0389       3       1         0389       3       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s17           | 1040     |             |                    | 290.30 | 290.32                 | 290.39            | 290.38   | 290.41       | 290.50   |          |                  |
| 1431       1431         1609       1870         1870       1870         1870       1870         1870       1870         2065       19         2290       2065         2245       200         2245       200         2245       200         2245       200         2240       200         2240       200         2240       200         2240       200         2240       200         23062       200         23063       200         23063       230         23063       230         2300       230         2300       2300         2300       2300         2300       2300         2300       2300         2300       2300         2300       2300         2300       2300         2000       2300         2000       2300         2000       2300         2000       2300         2000       2300         2000       2300         2000       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s 16          | 1240     |             |                    | 289.40 | 289.43                 | 289.49            | 289.48   | 289.52       | 289.61   |          |                  |
| 1609       1870         1870       1870         2065       2065         2065       2065         2290       206         2250       20         2250       20         2250       20         2250       2644         2264       2644         22829       2829         2000       2847         2001       2847         2002       2847         2003       2847         2004       2846         2005       2847         2005       2847         2005       2845         2005       2845         2005       2845         2005       2845         2006       2845         2007       2845         2008       2845         2009       2845         2000       2845         2000       2845         2000       2845         2000       2845         2000       2845         2000       2845         2000       2845         2000       2845         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s 15          | 1431     |             |                    | 288.73 | 288.76                 | 288.87            | 288.86   | 288.94       | 289.13   |          |                  |
| 1870       1870       1870         2065       2065       1         2065       2290       1         2250       2453       1         2453       2453       1         2544       2644       1         2545       2644       1         2646       2866       1         0wn       2847       1         3062       3062       1         0wn       3315       1         0wn       33463       1         0wn       33463       1         0wn       3645       1         0wn       3645       1         0wn       3645       1         0389       389       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s 14          | 1609     |             |                    | 288.37 | 288.48                 | 288.73            | 288.72   | 288.84       | 289.07   |          |                  |
| 2065       2065       1         2290       2290       1         2291       243       1         2245       2644       1         2264       2644       1         2286       2847       1         2866       2866       1         23062       2866       1         23063       3315       1         23063       3315       1         2300       3315       1         2300       3315       1         2000       3315       1         2000       3315       1         2000       3315       1         2000       3315       1         2001       3315       1         2001       3315       1         2001       3315       1         2001       3315       1         2001       3315       1         2001       3315       1         2001       3315       1         2001       3315       1         2001       3315       1         2001       3315       1         2001       3315       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s 13          | 1870     |             |                    | 288.26 | 288.37                 | 288.65            | 288.65   | 288.77       | 289.00   |          |                  |
| 2290       2290         2453       246         2644       264         2564       264         own       2847         2847       2847         own       2847         2846       29         0wn       2846         3365       29         0wn       3315         0wn       3315         0wn       33463         0wn       3645         0wn       3645         0wn       3645         0wn       3645         0wn       3735         0wn       389         04076       389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s 12          | 2065     |             |                    | 288.16 | 288.28                 | 288.57            | 288.57   | 288.69       | 288.91   |          |                  |
| 2453     2453       2644     2643       2644     2644       2829     2829       0wn     2847       2847     2846       0wn     2866       3062     29       3368     29       0wn     3315       0wn     3315       0wn     33463       0wn     3645       0wn     3645       0wn     3735       0wn     3889       04076     3889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s11           | 2290     |             |                    | 287.59 | 287.66                 | 287.82            | 287.82   | 287.90       | 288.09   |          |                  |
| 2644         2644         1           p         2829         1         1           own         2847         1         1         1           own         2847         1         1         1         1           own         2866         1         1         1         1         1           own         3362         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< td=""><td>s 10</td><td>2453</td><td></td><td></td><td>287.15</td><td>287.21</td><td>287.34</td><td>287.34</td><td>287.42</td><td>287.61</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s 10          | 2453     |             |                    | 287.15 | 287.21                 | 287.34            | 287.34   | 287.42       | 287.61   |          |                  |
| p       2829       2847       2         own       2847       2       2         own       2846       2       2         2366       3062       3062       2         3315       3315       2       2         own       3645       3       2         own       3645       3       2         own       3899       3       2       2         own       3899       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s 09          | 2644     |             |                    | 286.75 | 286.82                 | 286.99            | 286.99   | 287.08       | 287.34   |          |                  |
| own     2847          2866     2866          3062     3062          316     3268          own     3315          own     3345          p     3620          own     3645          own     3735          1     3889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08up          | 2829     |             |                    | 286.56 | 286.64                 | 286.84            | 286.83   | 286.94       | 287.25   |          |                  |
| 2866     2866       3062     3062       3062     3062       316     3268       00m     315       01     315       02     3463       0     3645       00m     3645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08down        | 2847     |             |                    | 286.50 | 286.58                 | 286.77            | 286.77   | 286.87       | 287.18   |          |                  |
| 3062     3062       3268     3268       own     3315       own     3315       p     3463       p     3620       own     3645       own     3735       own     3735       own     4076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s 08          | 2866     |             |                    | 286.49 | 286.57                 | 286.76            | 286.76   | 286.87       | 287.18   |          |                  |
| 3268     3268       own     3315       own     3315       p     3463       p     3620       own     3645       own     3645       own     3638       own     3645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s07           | 3062     |             |                    | 286.40 | 286.49                 | 286.68            | 286.68   | 286.79       | 287.11   |          |                  |
| own         3315         and the second secon | s 06          | 3268     |             |                    | 286.30 | 286.38                 | 286.59            | 286.57   | 286.70       | 287.05   |          |                  |
| p     3463     3463       p     3620     3645       own     3645     735       3735     3889     736       4076     70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06down        | 3315     |             |                    | 286.12 | 286.22                 | 286.43            | 286.41   | 286.55       | 286.94   |          |                  |
| p         3620         3645           own         3645         1           3735         3736         1           3889         3735         1           4076         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s05           | 3463     |             |                    | 286.02 | 286.12                 | 286.39            | 286.35   | 286.52       | 286.92   |          |                  |
| own 3645 own 3735 389 389 4076 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04up          | 3620     |             |                    | 285.91 | 286.03                 | 286.35            | 286.31   | 286.50       | 286.91   |          |                  |
| 3735     3735       3889     4076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04down        | 3645     |             |                    | 285.44 | 285.59                 | 286.12            | 286.02   | 286.30       | 286.79   |          |                  |
| 3889<br>4076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s04           | 3735     |             |                    | 285.27 | 285.42                 | 286.01            | 285.89   | 286.20       | 286.72   |          |                  |
| 4076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s03           | 3889     |             |                    | 284.83 | 284.99                 | 285.76            | 285.60   | 285.93       | 286.46   |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s02           | 4076     |             |                    | 284.31 | 284.66                 | 285.58            | 285.40   | 285.73       | 286.25   |          |                  |
| oxs01 4286 284.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s01           | 4286     |             |                    | 284.06 | 284.58                 | 285.52            | 285.34   | 285.64       | 286.12   |          |                  |

#### F.3 Otamatea Stream



